Quantifying droplet–solid friction using an atomic force microscope

Droplet Pub Date : 2024-02-20 DOI:10.1002/dro2.107
Xue Qi Koh, Calvin Thenarianto, Ville Jokinen, Dan Daniel
{"title":"Quantifying droplet–solid friction using an atomic force microscope","authors":"Xue Qi Koh,&nbsp;Calvin Thenarianto,&nbsp;Ville Jokinen,&nbsp;Dan Daniel","doi":"10.1002/dro2.107","DOIUrl":null,"url":null,"abstract":"<p>Controlling the wetting and spreading of microdroplets is key to technologies such as microfluidics, ink-jet printing, and surface coating. Contact angle goniometry is commonly used to characterize surface wetting by droplets, but the technique is ill-suited for high contact angles close to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>180</mn>\n \n <mo>°</mo>\n </mrow>\n </mrow>\n <annotation> $180^\\circ $</annotation>\n </semantics></math>. Here, we attach a micrometric-sized droplet to an atomic force microscope cantilever to directly quantify droplet–solid friction on different surfaces (superhydrophobic and underwater superoleophobic) with sub-nanonewton force resolutions. We demonstrate the versatility of our approach by performing friction measurements using different liquids (water and oil droplets) and under different ambient environments (in air and underwater). Finally, we show that underwater superoleophobic surfaces can be qualitatively different from superhydrophobic surfaces: droplet–solid friction is highly sensitive to droplet speeds for the former but not for the latter surface.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the wetting and spreading of microdroplets is key to technologies such as microfluidics, ink-jet printing, and surface coating. Contact angle goniometry is commonly used to characterize surface wetting by droplets, but the technique is ill-suited for high contact angles close to 180 ° $180^\circ $ . Here, we attach a micrometric-sized droplet to an atomic force microscope cantilever to directly quantify droplet–solid friction on different surfaces (superhydrophobic and underwater superoleophobic) with sub-nanonewton force resolutions. We demonstrate the versatility of our approach by performing friction measurements using different liquids (water and oil droplets) and under different ambient environments (in air and underwater). Finally, we show that underwater superoleophobic surfaces can be qualitatively different from superhydrophobic surfaces: droplet–solid friction is highly sensitive to droplet speeds for the former but not for the latter surface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原子力显微镜量化液滴与固体之间的摩擦力
控制微液滴的润湿和扩散是微流控、喷墨打印和表面涂层等技术的关键。接触角测角法通常用于表征液滴对表面的润湿,但该技术并不适合接近......的高接触角。 在这里,我们将微米大小的液滴附着在原子力显微镜悬臂上,以亚纳牛顿力分辨率直接量化不同表面(超疏水性和水下超疏水性)上的液滴-固体摩擦力。我们使用不同的液体(水滴和油滴)和在不同的环境(空气中和水下)下进行摩擦测量,证明了我们方法的多功能性。最后,我们展示了水下超疏水表面与超疏水表面的本质区别:前者的液滴-固体摩擦对液滴速度高度敏感,而后者的液滴-固体摩擦对液滴速度不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover, Volume 3, Number 4, October 2024 Inside Back Cover, Volume 3, Number 4, October 2024 Back Cover, Volume 3, Number 4, October 2024 Inside Front Cover, Volume 3, Number 4, October 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1