Y. Al-Sharo, Khalid Al Smadi, Takialddin Al Smadi, Y. N.
{"title":"Optimization of Stable Energy PV Systems Using the Internet of Things (IoT)","authors":"Y. Al-Sharo, Khalid Al Smadi, Takialddin Al Smadi, Y. N.","doi":"10.25130/tjes.31.1.11","DOIUrl":null,"url":null,"abstract":"The modern power grid faces rapid growth in load demand due to industrialization, leading to an unregulated environment and increasing adoption of renewable energy sources, which presents technical challenges, particularly in terms of stability. Hydrogen conversion technology revolutionizes clean electricity storage with renewable energy, and solar hydrogen is now available in autonomous solar systems. The efficiency of solar photovoltaic systems is closely related to using digital electronic maximum peak power tracking (MPPT) technology. The Internet of Things (IoT) is crucial for performance monitoring and real-time control of PV systems, enhancing the understanding of real-time operating parameters. IoT and wireless sensor networks for distributed solar energy devices and joint building design are essential for developing the photovoltaic construction industry. In this paper, the monitoring system that has been proposed offers a potentially effective solution for the intelligent remote and real-time monitoring of solar photovoltaic (PV) systems. It demonstrated a high level of accuracy, reaching 98.49%, and can transmit graphical representations to a smartphone application within a time frame of 52.34 seconds. Consequently, the battery's longevity was extended, energy consumption was diminished, and the quality of service (QoS) for real-time applications inside the Internet of Things (IoT) was enhanced.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":"11 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.31.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The modern power grid faces rapid growth in load demand due to industrialization, leading to an unregulated environment and increasing adoption of renewable energy sources, which presents technical challenges, particularly in terms of stability. Hydrogen conversion technology revolutionizes clean electricity storage with renewable energy, and solar hydrogen is now available in autonomous solar systems. The efficiency of solar photovoltaic systems is closely related to using digital electronic maximum peak power tracking (MPPT) technology. The Internet of Things (IoT) is crucial for performance monitoring and real-time control of PV systems, enhancing the understanding of real-time operating parameters. IoT and wireless sensor networks for distributed solar energy devices and joint building design are essential for developing the photovoltaic construction industry. In this paper, the monitoring system that has been proposed offers a potentially effective solution for the intelligent remote and real-time monitoring of solar photovoltaic (PV) systems. It demonstrated a high level of accuracy, reaching 98.49%, and can transmit graphical representations to a smartphone application within a time frame of 52.34 seconds. Consequently, the battery's longevity was extended, energy consumption was diminished, and the quality of service (QoS) for real-time applications inside the Internet of Things (IoT) was enhanced.