{"title":"The promising applications of 3D printing technology in neurotrauma","authors":"Wenbo He, Chongxi Xu, Wenbi Wu, Yuchen Chen, Jingxuan Hou, Zhouhaoran Chen, Jianguo Xu, Maling Gou, Yu Hu","doi":"10.36922/ijb.2311","DOIUrl":null,"url":null,"abstract":"Neurotrauma mainly includes brain injury, spinal cord injury, and peripheral nerve injury, which are characterized by high morbidity and disability rates, and involve costly treatments. Currently, various strategies have been applied for the treatment of neurotrauma, but their efficacy is unsatisfactory. New effective strategies are needed to be developed to promote recovery after neurotrauma. In recent years, three-dimensional (3D) printing technology has been used to manufacture customized and complex constructs in tissue engineering applications, exhibiting great potential in repairing nervous system injuries. In this review, we introduce the principles and advantages of 3D printing and 3D bioprinting technologies that have been applied to repair injured nervous system. In particular, we summarize the current strategies in the aspects of biomaterials, physical stimulation, bioactive substances, cell transplantation, and their combination that have been considered in fabricating 3D-printed devices for neurotrauma treatment. Additionally, the challenges and prospects of 3D printing for neurotrauma treatment were also presented.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"53 ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.2311","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotrauma mainly includes brain injury, spinal cord injury, and peripheral nerve injury, which are characterized by high morbidity and disability rates, and involve costly treatments. Currently, various strategies have been applied for the treatment of neurotrauma, but their efficacy is unsatisfactory. New effective strategies are needed to be developed to promote recovery after neurotrauma. In recent years, three-dimensional (3D) printing technology has been used to manufacture customized and complex constructs in tissue engineering applications, exhibiting great potential in repairing nervous system injuries. In this review, we introduce the principles and advantages of 3D printing and 3D bioprinting technologies that have been applied to repair injured nervous system. In particular, we summarize the current strategies in the aspects of biomaterials, physical stimulation, bioactive substances, cell transplantation, and their combination that have been considered in fabricating 3D-printed devices for neurotrauma treatment. Additionally, the challenges and prospects of 3D printing for neurotrauma treatment were also presented.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.