Penerapan Algoritma Long Short-Term Memory untuk Prediksi Produksi Kelapa Sawit

Fahri Husaini, Inggih Permana, M. Afdal, Febi Nur Salisah
{"title":"Penerapan Algoritma Long Short-Term Memory untuk Prediksi Produksi Kelapa Sawit","authors":"Fahri Husaini, Inggih Permana, M. Afdal, Febi Nur Salisah","doi":"10.57152/malcom.v4i2.1187","DOIUrl":null,"url":null,"abstract":"Kelapa sawit memberikan kontribusi yang besar bagi perkembangan perekonomian Indonesia. Salah satunya ekspor non migas negara dan yang terus mengalami pertumbuhan yang dilakukan perusahaan kelapa sawit. PT XYZ merupakan salah satu perusahaan kelapa sawit yang mengolah kelapa sawit menjadi minyak kelapa sawit. Dalam menghadapi permintaan minyak kelapa sawit dunia yang terus meningkat, PT. XYZ berkomitmen untuk meningkatkan produksinya. Untuk meningkatkan produksi, PT XYZ telah menetapkan target produksi dengan melakukan prediksi produksi kelapa sawit menggunakan metode Global Telling. Namun, metode ini kurang efektif karena tidak dilakukan secara berkala. Untuk itu, diperlukan suatu metode yang dapat mempelajari pola panen setiap bulannya untuk membuat target produksi. Penelitian ini menerapkan Algoritma Long Short-Term Memory dengan percobaan beberapa parameter untuk menemukan model terbaik yang dapat memprediksi produksi kelapa sawit secara akurat. Berdasarkan hasil percobaan, model dengan optimizer RMSprop, learning rate 0.001, dan batch size 8 merupakan model dengan parameter terbaik dengan nilai RMSE 0.1725, MAPE 0.5087, dan R2 0.0578. Model tersebut memprediksi bahwa produksi kelapa sawit akan mengalami penurunan","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"196 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v4i2.1187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kelapa sawit memberikan kontribusi yang besar bagi perkembangan perekonomian Indonesia. Salah satunya ekspor non migas negara dan yang terus mengalami pertumbuhan yang dilakukan perusahaan kelapa sawit. PT XYZ merupakan salah satu perusahaan kelapa sawit yang mengolah kelapa sawit menjadi minyak kelapa sawit. Dalam menghadapi permintaan minyak kelapa sawit dunia yang terus meningkat, PT. XYZ berkomitmen untuk meningkatkan produksinya. Untuk meningkatkan produksi, PT XYZ telah menetapkan target produksi dengan melakukan prediksi produksi kelapa sawit menggunakan metode Global Telling. Namun, metode ini kurang efektif karena tidak dilakukan secara berkala. Untuk itu, diperlukan suatu metode yang dapat mempelajari pola panen setiap bulannya untuk membuat target produksi. Penelitian ini menerapkan Algoritma Long Short-Term Memory dengan percobaan beberapa parameter untuk menemukan model terbaik yang dapat memprediksi produksi kelapa sawit secara akurat. Berdasarkan hasil percobaan, model dengan optimizer RMSprop, learning rate 0.001, dan batch size 8 merupakan model dengan parameter terbaik dengan nilai RMSE 0.1725, MAPE 0.5087, dan R2 0.0578. Model tersebut memprediksi bahwa produksi kelapa sawit akan mengalami penurunan
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长短期记忆算法在棕榈油产量预测中的应用
棕榈油对印尼经济的发展贡献巨大。其中之一是该国的非石油和天然气出口,棕榈油公司的出口持续增长。PT XYZ 是将棕榈油加工成棕榈油的棕榈油公司之一。面对全球棕榈油需求的不断增长,PT XYZ 致力于提高产量。为了提高产量,PT XYZ 通过使用 "全球通告法 "预测棕榈油产量,制定了产量目标。然而,这种方法由于不是定期进行,因此效果较差。因此,需要一种可以学习每月收成模式的方法来制定生产目标。本研究应用长短期记忆算法,通过多个参数实验,找到了能准确预测棕榈油产量的最佳模型。根据实验结果,采用 RMSprop 优化器、学习率为 0.001、批量大小为 8 的模型是参数最佳的模型,其 RMSE 值为 0.1725,MAPE 为 0.5087,R2 为 0.0578。该模型预测未来油棕榈树产量将下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the Interconnection between Digital Skills of Human Resources in SMEs and the Success of Digital Business Strategy Implementation Implementasi Teknologi Berbasis Web untuk Efesiensi Waktu Pencarian Lahan Parkir Peningkatan Cakupan Sinyal Wi-Fi dengan Penempatan Access Point Menggunakan Metode Probabilitas Bayesian Implementasi Algoritma Decision Tree untuk Rekomendasi Film dan Klasifikasi Rating pada Platform Netflix Deteksi Tingkat Kematangan Buah Tomat Menggunakan YOLOv5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1