Simulating Compressive Stream Interaction Regions during Parker Solar Probe’s First Perihelion Using Stream-aligned Magnetohydrodynamics

E. M. Wraback, A. P. Hoffmann, W. Manchester, I. V. Sokolov, B. van der Holst, D. Carpenter
{"title":"Simulating Compressive Stream Interaction Regions during Parker Solar Probe’s First Perihelion Using Stream-aligned Magnetohydrodynamics","authors":"E. M. Wraback, A. P. Hoffmann, W. Manchester, I. V. Sokolov, B. van der Holst, D. Carpenter","doi":"10.3847/1538-4357/ad21fd","DOIUrl":null,"url":null,"abstract":"\n We used the stream-aligned magnetohydrodynamics (SA-MHD) model to simulate Carrington rotation 2210, which contains Parker Solar Probe’s (PSP) first perihelion at 36.5 R\n ⊙ on 2018 November 6, to provide context to the in situ PSP observations by FIELDS and SWEAP. The SA-MHD model aligns the magnetic field with the velocity vector at each point, thereby allowing for clear connectivity between the spacecraft and the source regions on the Sun, without unphysical magnetic field structures. During this Carrington rotation, two stream interaction regions (SIRs) form, due to the deep solar minimum. We include the energy partitioning of the parallel and perpendicular ions and the isotropic electrons to investigate the temperature anisotropy through the compression regions to better understand the wave energy amplification and proton thermal energy partitioning in a global context. Overall, we found good agreement in all in situ plasma parameters between the SA-MHD results and the observations at PSP, STEREO-A, and Earth, including at PSP’s perihelion and through the compression region of the SIRs. In the typical solar wind, the parallel proton temperature is preferentially heated, except in the SIR, where there is an enhancement in the perpendicular proton temperature. This is further showcased in the ion cyclotron relaxation time, which shows a distinct decrease through the SIR compression regions. This work demonstrates the success of the Alfvén wave turbulence theory for predicting interplanetary magnetic turbulence levels, while self-consistently reproducing solar wind speeds, densities, and overall temperatures, including at small heliocentric distances and through SIR compression regions.","PeriodicalId":504209,"journal":{"name":"The Astrophysical Journal","volume":"108 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad21fd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We used the stream-aligned magnetohydrodynamics (SA-MHD) model to simulate Carrington rotation 2210, which contains Parker Solar Probe’s (PSP) first perihelion at 36.5 R ⊙ on 2018 November 6, to provide context to the in situ PSP observations by FIELDS and SWEAP. The SA-MHD model aligns the magnetic field with the velocity vector at each point, thereby allowing for clear connectivity between the spacecraft and the source regions on the Sun, without unphysical magnetic field structures. During this Carrington rotation, two stream interaction regions (SIRs) form, due to the deep solar minimum. We include the energy partitioning of the parallel and perpendicular ions and the isotropic electrons to investigate the temperature anisotropy through the compression regions to better understand the wave energy amplification and proton thermal energy partitioning in a global context. Overall, we found good agreement in all in situ plasma parameters between the SA-MHD results and the observations at PSP, STEREO-A, and Earth, including at PSP’s perihelion and through the compression region of the SIRs. In the typical solar wind, the parallel proton temperature is preferentially heated, except in the SIR, where there is an enhancement in the perpendicular proton temperature. This is further showcased in the ion cyclotron relaxation time, which shows a distinct decrease through the SIR compression regions. This work demonstrates the success of the Alfvén wave turbulence theory for predicting interplanetary magnetic turbulence levels, while self-consistently reproducing solar wind speeds, densities, and overall temperatures, including at small heliocentric distances and through SIR compression regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用流对准磁流体力学模拟帕克太阳探测器首次近日点期间的压缩流相互作用区
我们使用流对齐磁流体力学(SA-MHD)模型模拟了卡灵顿自转2210,其中包含帕克太阳探测器(PSP)于2018年11月6日在36.5 R ⊙处的首次近日点,为FIELDS和SWEAP的现场PSP观测提供背景资料。SA-MHD模型将磁场与每个点的速度矢量对齐,从而使航天器与太阳上的源区之间具有清晰的连接,而不会出现非物理的磁场结构。在这次卡林顿旋转期间,由于太阳深度极小,形成了两个流相互作用区(SIR)。我们将平行和垂直离子以及各向同性电子的能量分配纳入研究范围,以调查压缩区域的温度各向异性,从而更好地理解波能放大和质子热能分配的全局背景。总之,我们发现 SA-MHD 结果与在 PSP、STEREO-A 和地球上观测到的所有原位等离子体参数都非常吻合,包括在 PSP 的近日点和 SIR 的压缩区域。在典型的太阳风中,平行质子温度优先被加热,但在 SIR 中除外,因为在 SIR 中垂直质子温度被提高。离子回旋弛豫时间进一步证明了这一点,在 SIR 压缩区域,离子回旋弛豫时间明显减少。这项工作证明了阿尔芬波湍流理论在预测行星际磁湍流水平方面的成功,同时自洽地再现了太阳风的速度、密度和总体温度,包括在较小的日心距离和通过 SIR 压缩区时的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parker Solar Probe Observations of Magnetic Reconnection Exhausts in Quiescent Plasmas near the Sun Erratum: “Inferences from Surface Brightness Fluctuations of Zwicky 3146 via the Sunyaev–Zel’dovich Effect and X-Ray Observations” (2023, ApJ, 951, 41) Erratum: “On Stellar Evolution in a Neutrino Hertzsprung–Russell Diagram” (2020, ApJ, 893, 133) Three-dimensional Magnetohydrodynamic Simulations of Periodic Variations of Ganymede’s Footprint Observability of Substructures in the Planet-forming Disk in the (Sub)centimeter Wavelength with SKA and ngVLA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1