Robot-oriented 6G satellite-UAV networks: Requirements, paradigm shifts, and case studies

Peng Wei, W. Feng, Yunfei Chen, Ning Ge, Wei Xiang
{"title":"Robot-oriented 6G satellite-UAV networks: Requirements, paradigm shifts, and case studies","authors":"Peng Wei, W. Feng, Yunfei Chen, Ning Ge, Wei Xiang","doi":"10.23919/JCC.fa.2023-0635.202402","DOIUrl":null,"url":null,"abstract":"Networked robots can perceive their surroundings, interact with each other or humans, and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle (UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links, via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener's Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage, enabling new orchestration between network serving and positive mobility control of robots. Moreover, the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing (MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0635.202402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Networked robots can perceive their surroundings, interact with each other or humans, and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle (UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links, via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener's Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage, enabling new orchestration between network serving and positive mobility control of robots. Moreover, the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing (MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向机器人的 6G 卫星-无人机网络:要求、范式转变和案例研究
联网机器人可以感知周围环境,相互之间或与人类互动,并做出决策以完成远程/危险/复杂环境中的指定任务。卫星-无人飞行器(UAV)网络可通过提供按需通信服务为这类机器人提供支持。然而,在传统的开环通信范式下,网络资源通常被划分为与用户基本无关的链路,忽略了机器人协作的任务级依赖性。因此,考虑到背后的高层次内容和价值,开发一种新的通信范式以促进多机器人操作势在必行。受维纳控制论的启发,本文探讨了面向机器人的卫星-无人机网络的闭环通信范式。该范例可处理群组结构链路,从而以任务为导向分配资源。它还能利用机器人的移动性将网络从全覆盖中解放出来,实现网络服务与机器人积极移动控制之间的新协调。此外,传感、通信、计算和控制的整合将扩大这种新模式的优势。我们介绍了联合移动边缘计算(MEC)卸载和机器人移动控制的案例研究,最后概述了潜在的挑战和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intellicise model transmission for semantic communication in intelligence-native 6G networks Variational learned talking-head semantic coded transmission system Physical-layer secret key generation for dual-task scenarios Intelligent dynamic heterogeneous redundancy architecture for IoT systems Joint optimization for on-demand deployment of UAVs and spectrum allocation in UAVs-assisted communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1