Robust Zero-Watermarking by Circular Features and 1-D NRDPWT Transformation

Hsiu-Chi Tseng Hsiu-Chi Tseng, King-Chu Hung Hsiu-Chi Tseng
{"title":"Robust Zero-Watermarking by Circular Features and 1-D NRDPWT Transformation","authors":"Hsiu-Chi Tseng Hsiu-Chi Tseng, King-Chu Hung Hsiu-Chi Tseng","doi":"10.53106/199115992024023501008","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a secure and robust zero-watermarking framework that leverages the advantages of zero-watermarking, ensuring non-destructive modification of original images and unlimited capacity. The proposed method enables robust watermark embedding while preserving the original image. It employs a novel feature extraction approach using circular areas based on image radius, enhancing feature resilience. Additionally, applying one-dimensional non-recursive discrete periodized wavelet transform (1-D NRDPWT) converts feature values into phi, contributing to enhanced stability and robustness. Enhanced security is achieved through the use of Shuffle and Pseudo-Random Number Generator (PRNG). Experimental results, evaluated using metrics such as Bit Error Rate (BER) and Normalized Correlation (NC), validate the exceptional performance of this watermarking technique. These findings underscore the framework’s robustness, security, reliability, and integrity against both general and geometric noise attacks, making it a secure and robust solution for modern digital image copyright protection. In summary, our method offers an effective defense against various noise attacks while ensuring the highest watermark quality without compromising the original image. It is a significant advancement in copyright protection applications.\n \n","PeriodicalId":345067,"journal":{"name":"電腦學刊","volume":"93 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"電腦學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/199115992024023501008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a secure and robust zero-watermarking framework that leverages the advantages of zero-watermarking, ensuring non-destructive modification of original images and unlimited capacity. The proposed method enables robust watermark embedding while preserving the original image. It employs a novel feature extraction approach using circular areas based on image radius, enhancing feature resilience. Additionally, applying one-dimensional non-recursive discrete periodized wavelet transform (1-D NRDPWT) converts feature values into phi, contributing to enhanced stability and robustness. Enhanced security is achieved through the use of Shuffle and Pseudo-Random Number Generator (PRNG). Experimental results, evaluated using metrics such as Bit Error Rate (BER) and Normalized Correlation (NC), validate the exceptional performance of this watermarking technique. These findings underscore the framework’s robustness, security, reliability, and integrity against both general and geometric noise attacks, making it a secure and robust solution for modern digital image copyright protection. In summary, our method offers an effective defense against various noise attacks while ensuring the highest watermark quality without compromising the original image. It is a significant advancement in copyright protection applications.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用环形特征和一维 NRDPWT 变换实现稳健的零水印技术
本文介绍了一种安全、稳健的零水印框架,它充分利用了零水印的优势,确保对原始图像进行非破坏性修改,并具有无限的容量。所提出的方法能在保留原始图像的同时实现稳健的水印嵌入。它采用了一种新颖的特征提取方法,使用基于图像半径的圆形区域,增强了特征复原能力。此外,应用一维非递归离散周期小波变换(1-D NRDPWT)将特征值转换为 phi,有助于增强稳定性和鲁棒性。通过使用洗牌和伪随机数发生器(PRNG)增强了安全性。使用比特误码率(BER)和归一化相关性(NC)等指标评估的实验结果验证了这种水印技术的卓越性能。这些结果表明,该框架在抵御一般噪声和几何噪声攻击方面具有稳健性、安全性、可靠性和完整性,是现代数字图像版权保护的安全稳健的解决方案。总之,我们的方法能有效抵御各种噪声攻击,同时确保最高的水印质量,而不损害原始图像。这是版权保护应用领域的一大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Deep Neural Network for Facial Beauty Improvement ACANet: A Fine-grained Image Classification Optimization Method Based on Convolution and Attention Fusion Retinal OCT Image Classification Based on CNN-RNN Unified Neural Networks Beam Tracking Based on a New State Model for mmWave V2I Communication on 3D Roads Research on Strategies for Improving the Quality of English Blended Teaching in Vocational Colleges through Network Informatization Resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1