{"title":"Deciphering relationship between depression and microbial molecules based on multi-omics: A case study of Chaigui Granules","authors":"Qi Wang , Yingxia Zhao , Xuemei Qin , Junsheng Tian","doi":"10.1016/j.chmed.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To decipher the antidepression effect of Chaigui Granules (CGKL) from the relationship between depression and microbial molecules based on multi-omics.</div></div><div><h3>Methods</h3><div>Male SD rats were subjected to chronic unpredictable mild stress (CUMS) for seven weeks. The antidepressants CGKL extract and CGKL were administered for the following four weeks. The behavior test and the content of monoamine neurotransmitters were used to evaluate the efficacy of CGKL. The 16S rRNA sequencing, LC-MS technology and molecular biological techniques were used to explore the pharmacological mechanism of CGKL.</div></div><div><h3>Results</h3><div>CGKL treatment obviously alleviated the depressive behavioral indicators and regulated the content of monoamine neurotransmitters, and presented dose-dependent manner. CGKL could also improve the arginine metabolism disorder of gut microbiota in the jejunum. Meanwhile, the contents of arginine and its metabolites in the serum and hippocampus were regulated to normal levels. Further investigation indicated that the expression of related rate-limiting enzyme genes and proteins in the hippocampus was validated by qRT-PCR and Western blotting. The results showed that the gut microbiota, metabolites, and genes or proteins of rate-limiting enzymes involved in the arginine pathway were significantly regulated by CGKL.</div></div><div><h3>Conclusion</h3><div>The present study demonstrates that CGKL might exert antidepressant effects through regulating arginine metabolism, and its mechanism may be related to modulating the gut microbiota and related metabolic enzyme.</div></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 4","pages":"Pages 612-621"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167463842400011X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To decipher the antidepression effect of Chaigui Granules (CGKL) from the relationship between depression and microbial molecules based on multi-omics.
Methods
Male SD rats were subjected to chronic unpredictable mild stress (CUMS) for seven weeks. The antidepressants CGKL extract and CGKL were administered for the following four weeks. The behavior test and the content of monoamine neurotransmitters were used to evaluate the efficacy of CGKL. The 16S rRNA sequencing, LC-MS technology and molecular biological techniques were used to explore the pharmacological mechanism of CGKL.
Results
CGKL treatment obviously alleviated the depressive behavioral indicators and regulated the content of monoamine neurotransmitters, and presented dose-dependent manner. CGKL could also improve the arginine metabolism disorder of gut microbiota in the jejunum. Meanwhile, the contents of arginine and its metabolites in the serum and hippocampus were regulated to normal levels. Further investigation indicated that the expression of related rate-limiting enzyme genes and proteins in the hippocampus was validated by qRT-PCR and Western blotting. The results showed that the gut microbiota, metabolites, and genes or proteins of rate-limiting enzymes involved in the arginine pathway were significantly regulated by CGKL.
Conclusion
The present study demonstrates that CGKL might exert antidepressant effects through regulating arginine metabolism, and its mechanism may be related to modulating the gut microbiota and related metabolic enzyme.