Magnetic Trapping of Galactic Cosmic Rays in the Outer Heliosheath and Their Preferential Entry into the Heliosphere

V. Florinski, Juan Alonso Guzman, J. Kleimann, I. Baliukin, Keyvan Ghanbari, D. Turner, B. Zieger, J. Kóta, M. Opher, V. Izmodenov, D. Alexashov, J. Giacalone, J. Richardson
{"title":"Magnetic Trapping of Galactic Cosmic Rays in the Outer Heliosheath and Their Preferential Entry into the Heliosphere","authors":"V. Florinski, Juan Alonso Guzman, J. Kleimann, I. Baliukin, Keyvan Ghanbari, D. Turner, B. Zieger, J. Kóta, M. Opher, V. Izmodenov, D. Alexashov, J. Giacalone, J. Richardson","doi":"10.3847/1538-4357/ad0b15","DOIUrl":null,"url":null,"abstract":"\n This paper examines the geometry of interstellar magnetic field lines close to the boundary of the heliosphere in the direction of the unperturbed local interstellar magnetic field, where the field lines are spread apart by the heliopause (HP). Such field parting establishes a region of weaker magnetic field of about 300 au in size in the northern hemisphere that acts as a giant magnetic trap affecting the propagation of galactic cosmic rays (GCRs). The choice of an analytic model of the magnetic field in the very local interstellar medium allows us to qualitatively study the resulting magnetic field draping pattern while avoiding unphysical dissipation across the HP-impeding numerical magnetohydrodynamic (MHD) models. We investigate GCR transport in the region exterior to the heliosphere, including the magnetic trap, subject to guiding center drifts, pitch angle scattering, and perpendicular diffusion. The transport coefficients were derived from Voyager 1 observations of magnetic turbulence in the VLISM. Our results predict a ring current of energetic ions drifting around the interior of the magnetic trap. It is also demonstrated that GCRs cross the HP for the first time preferentially through a crescent-shaped region between the magnetic trap and the upwind direction. The paper includes results of MHD modeling of the heliosphere that provide the coordinates of the center of the magnetic trap in ecliptic coordinates. In addition to the heliosphere, we examine several extreme field draping configurations that could describe the astrospheres of other stars.","PeriodicalId":504209,"journal":{"name":"The Astrophysical Journal","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad0b15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the geometry of interstellar magnetic field lines close to the boundary of the heliosphere in the direction of the unperturbed local interstellar magnetic field, where the field lines are spread apart by the heliopause (HP). Such field parting establishes a region of weaker magnetic field of about 300 au in size in the northern hemisphere that acts as a giant magnetic trap affecting the propagation of galactic cosmic rays (GCRs). The choice of an analytic model of the magnetic field in the very local interstellar medium allows us to qualitatively study the resulting magnetic field draping pattern while avoiding unphysical dissipation across the HP-impeding numerical magnetohydrodynamic (MHD) models. We investigate GCR transport in the region exterior to the heliosphere, including the magnetic trap, subject to guiding center drifts, pitch angle scattering, and perpendicular diffusion. The transport coefficients were derived from Voyager 1 observations of magnetic turbulence in the VLISM. Our results predict a ring current of energetic ions drifting around the interior of the magnetic trap. It is also demonstrated that GCRs cross the HP for the first time preferentially through a crescent-shaped region between the magnetic trap and the upwind direction. The paper includes results of MHD modeling of the heliosphere that provide the coordinates of the center of the magnetic trap in ecliptic coordinates. In addition to the heliosphere, we examine several extreme field draping configurations that could describe the astrospheres of other stars.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外日光鞘中银河宇宙射线的磁捕获及其优先进入日光层的情况
本文研究了日光层边界附近未受扰动的本地星际磁场方向的星际磁场线的几何形状,在那里,磁场线被日光层(HP)分开。这种磁场分离在北半球形成了一个面积约为 300 au 的较弱磁场区域,它就像一个巨大的磁阱,影响着银河宇宙射线(GCR)的传播。我们选择了一个非常局部的星际介质磁场分析模型,这使我们能够定性地研究由此产生的磁场垂悬模式,同时避免了横跨HP阻碍数值磁流体动力(MHD)模型的非物理耗散。我们研究了日光层外部区域(包括磁阱)的 GCR 传输,受制于制导中心漂移、俯仰角散射和垂直扩散。传输系数来自旅行者 1 号对 VLISM 中磁湍流的观测。我们的结果预测高能离子环流在磁阱内部漂移。研究还证明,GCRs 首次穿过 HP 时,会优先通过磁阱与上风方向之间的新月形区域。论文包括日光层的 MHD 建模结果,该结果提供了磁阱中心在黄道坐标上的坐标。除了日光层之外,我们还研究了可能描述其他恒星天球的几种极端磁场垂悬构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parker Solar Probe Observations of Magnetic Reconnection Exhausts in Quiescent Plasmas near the Sun Erratum: “Inferences from Surface Brightness Fluctuations of Zwicky 3146 via the Sunyaev–Zel’dovich Effect and X-Ray Observations” (2023, ApJ, 951, 41) Erratum: “On Stellar Evolution in a Neutrino Hertzsprung–Russell Diagram” (2020, ApJ, 893, 133) Three-dimensional Magnetohydrodynamic Simulations of Periodic Variations of Ganymede’s Footprint Observability of Substructures in the Planet-forming Disk in the (Sub)centimeter Wavelength with SKA and ngVLA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1