Yuanyuan Zhang, Zhao Liu, Zaimao Luan, Xuefen Cao, Fanhui Meng, Lin Song
{"title":"Propagation effect of lightning electromagnetic field along real ground surface and its validation on correcting lightning location system errors","authors":"Yuanyuan Zhang, Zhao Liu, Zaimao Luan, Xuefen Cao, Fanhui Meng, Lin Song","doi":"10.3233/jae-230070","DOIUrl":null,"url":null,"abstract":"Artificially triggered lightning experimental data from Guangdong Comprehensive Observation Experimental Base on Lightning Discharge (GCOELD) was applied to analyze the propagation effect of lightning electromagnetic field along the real ground surface. The accuracy of the finite-difference time-domain (FDTD) on correcting lightning location system (LLS) errors was validated compared with the Elevation Model (EM). Results show that the wave-shape and time-delay of electromagnetic fields can be significantly affected when they propagate over the real ground surface. The time-delay of the field waveform become larger with an increasing roughness. The wavefront electric field is enhanced due to the reflection and variant of the wave when lightning waves propagate across the high and sharp terrain. Near the lightning strokes, the peak of vertical electric value decreases significantly with the electrostatic shielding effect. The max time delay calculated by FDTD is 8.34 μs; while that by EM is 6.55 μs. In the selected nine lightning stroke points, eight are positively revised by EM, and five by FDTD. Both FDTD and EM can be used on LLS error revision caused by the real ground surface around GCOELD, although EM is more efficient than FDTD in this case.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Artificially triggered lightning experimental data from Guangdong Comprehensive Observation Experimental Base on Lightning Discharge (GCOELD) was applied to analyze the propagation effect of lightning electromagnetic field along the real ground surface. The accuracy of the finite-difference time-domain (FDTD) on correcting lightning location system (LLS) errors was validated compared with the Elevation Model (EM). Results show that the wave-shape and time-delay of electromagnetic fields can be significantly affected when they propagate over the real ground surface. The time-delay of the field waveform become larger with an increasing roughness. The wavefront electric field is enhanced due to the reflection and variant of the wave when lightning waves propagate across the high and sharp terrain. Near the lightning strokes, the peak of vertical electric value decreases significantly with the electrostatic shielding effect. The max time delay calculated by FDTD is 8.34 μs; while that by EM is 6.55 μs. In the selected nine lightning stroke points, eight are positively revised by EM, and five by FDTD. Both FDTD and EM can be used on LLS error revision caused by the real ground surface around GCOELD, although EM is more efficient than FDTD in this case.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.