Mathematical Modelling and Numerical Simulation of Hepatitis B Viral Infection: The Case of Burkina Faso

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-31 DOI:10.29020/nybg.ejpam.v17i1.4987
Adama Kiemtore, W. O. Sawadogo, Fatima Aquel, Hamza Alaa, K. S. Somda
{"title":"Mathematical Modelling and Numerical Simulation of Hepatitis B Viral Infection: The Case of Burkina Faso","authors":"Adama Kiemtore, W. O. Sawadogo, Fatima Aquel, Hamza Alaa, K. S. Somda","doi":"10.29020/nybg.ejpam.v17i1.4987","DOIUrl":null,"url":null,"abstract":"Hepatitis is a viral infection that can cause inflammation of the liver and lead to severe liver damage and even death. The study of hepatitis in Burkina Faso is crucial for several reasons. Indeed, understanding the epidemiology of hepatitis in Burkina Faso can help develop effective prevention and control strategies, and its study can contribute to a better understanding of the global burden of the disease and the development of effective interventions in other parts of the world. To this aim, a new differential susceptibility and infectivity mathematical model of Hepatitis B transmission was developed in order to simulate the potential spread of the Hepatitis B virus in the population of Burkina Faso. Once the mathematical model is presented, the existence and uniqueness of non-negative solutions are proved. The model has a globally asymptotically stable disease-free equilibrium when the basic reproduction number R01 and a globally asymptotically stable endemic equilibrium when R0 > 1. The global asymptotic stability of the disease-free equilibrium has been studied using the Castillo Chavez method [5]. The Lyapunov function and the LaSalle invariance principle are used to prove the global asymptotic stability of the endemic equilibrium [26, 4, 18]. To simulate the proposed model, a Matlab numerical code has been developed. Numerical simulations are performed using data of Burkina Faso. The obtained numerical results confirm analytical results as well as the evolution of hepatitis B in Burkina Faso.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"63 30","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.4987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatitis is a viral infection that can cause inflammation of the liver and lead to severe liver damage and even death. The study of hepatitis in Burkina Faso is crucial for several reasons. Indeed, understanding the epidemiology of hepatitis in Burkina Faso can help develop effective prevention and control strategies, and its study can contribute to a better understanding of the global burden of the disease and the development of effective interventions in other parts of the world. To this aim, a new differential susceptibility and infectivity mathematical model of Hepatitis B transmission was developed in order to simulate the potential spread of the Hepatitis B virus in the population of Burkina Faso. Once the mathematical model is presented, the existence and uniqueness of non-negative solutions are proved. The model has a globally asymptotically stable disease-free equilibrium when the basic reproduction number R01 and a globally asymptotically stable endemic equilibrium when R0 > 1. The global asymptotic stability of the disease-free equilibrium has been studied using the Castillo Chavez method [5]. The Lyapunov function and the LaSalle invariance principle are used to prove the global asymptotic stability of the endemic equilibrium [26, 4, 18]. To simulate the proposed model, a Matlab numerical code has been developed. Numerical simulations are performed using data of Burkina Faso. The obtained numerical results confirm analytical results as well as the evolution of hepatitis B in Burkina Faso.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙型肝炎病毒感染的数学建模和数值模拟:布基纳法索案例
肝炎是一种病毒感染,可引起肝脏炎症,导致严重的肝损伤,甚至死亡。出于多种原因,对布基纳法索肝炎的研究至关重要。事实上,了解布基纳法索的肝炎流行病学有助于制定有效的预防和控制策略,对其进行研究有助于更好地了解该疾病的全球负担,并为世界其他地区制定有效的干预措施做出贡献。为此,我们建立了一个新的乙肝传播易感性和传染性差分数学模型,以模拟乙肝病毒在布基纳法索人口中的潜在传播。数学模型提出后,证明了非负解法的存在性和唯一性。当基本繁殖数 R01 时,该模型有一个全局渐近稳定的无病均衡;当 R0 > 1 时,有一个全局渐近稳定的流行均衡。利用 Castillo Chavez 方法[5]研究了无病平衡的全局渐进稳定性。Lyapunov函数和LaSalle不变性原理被用来证明地方病平衡的全局渐进稳定性[26, 4, 18]。为了模拟所提出的模型,我们开发了一套 Matlab 数值代码。利用布基纳法索的数据进行了数值模拟。所获得的数值结果证实了分析结果以及布基纳法索乙型肝炎的演变情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1