Predicting Hepatotoxicity of Drug-like compounds based on Bayesian model

Han-Ha Chai, Wonchoul Park, Yeoung-Bae Jin, Dajeong Lim
{"title":"Predicting Hepatotoxicity of Drug-like compounds based on Bayesian model","authors":"Han-Ha Chai, Wonchoul Park, Yeoung-Bae Jin, Dajeong Lim","doi":"10.5762/kais.2024.25.1.626","DOIUrl":null,"url":null,"abstract":"Predicting hepatotoxicity is an important component of safety-related evaluations of drug-like compounds. Hepatotoxicity is related to the physicochemical properties of drug-like compounds, especially their structural alerts. In this study, we developed a Bayesian model to predict the hepatotoxicities of 498 drug-like compounds based on their quantitative structure-toxicity relationships (QSAR). The devised model predicted the hepatotoxicity of these compounds using 25 structural descriptors (such as the ECFP6 fingerprint) and provided a sensitivity, specificity","PeriodicalId":112431,"journal":{"name":"Journal of the Korea Academia-Industrial cooperation Society","volume":"49 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Academia-Industrial cooperation Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5762/kais.2024.25.1.626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting hepatotoxicity is an important component of safety-related evaluations of drug-like compounds. Hepatotoxicity is related to the physicochemical properties of drug-like compounds, especially their structural alerts. In this study, we developed a Bayesian model to predict the hepatotoxicities of 498 drug-like compounds based on their quantitative structure-toxicity relationships (QSAR). The devised model predicted the hepatotoxicity of these compounds using 25 structural descriptors (such as the ECFP6 fingerprint) and provided a sensitivity, specificity
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯模型预测类药物的肝毒性
预测肝毒性是类药物安全性评估的重要组成部分。肝毒性与类药物的理化性质有关,尤其是其结构警报。在本研究中,我们根据类药物的定量结构-毒性关系(QSAR)建立了一个贝叶斯模型来预测 498 种类药物的肝毒性。所设计的模型利用 25 个结构描述因子(如 ECFP6 指纹)预测了这些化合物的肝毒性,并提供了灵敏度、特异性和灵敏度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Children’s Social Withdrawal on Smartphone Dependence: Mediating Effect of Academic Engagement Korea Government Policy Evaluation of The Research Equipment Industry A Study on SNS Market Selection Behavior by Creative Consumption Types, Curiosity, and Innovativeness Analysis of dance performance trends using news big data focusing on 2000~2022 The Impact of Intra Embeddedness on Turnover Intentions in Military Officers: Focusing on The Moderating Effect of Extra Social Capital
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1