An efficient two-grid high-order compact difference scheme with variable-step BDF2 method for the semilinear parabolic equation

Bingyin Zhang, Hongfei Fu
{"title":"An efficient two-grid high-order compact difference scheme with variable-step BDF2 method for the semilinear parabolic equation","authors":"Bingyin Zhang, Hongfei Fu","doi":"10.1051/m2an/2024008","DOIUrl":null,"url":null,"abstract":"Due to the lack of  corresponding analysis on appropriate mapping operator between two grids, high-order two-grid difference algorithms are rarely studied. In this paper, we firstly discuss the boundedness of a local bi-cubic Lagrange interpolation operator. And then, taking the semilinear parabolic equation as an example, we first construct a  variable-step high-order nonlinear difference algorithm using compact difference technique in space and  the second-order backward differentiation formula with variable temporal stepsize in time. With the help of discrete orthogonal convolution kernels, temporal-spatial error splitting idea  and a cut-off numerical technique, the unique solvability, maximum-norm stability and corresponding  error estimate of the high-order nonlinear difference scheme are established under assumption that the temporal stepsize ratio satisfies $ r_{k} := \\tau_{k}/\\tau_{k-1} < 4.8645 $. Then, an efficient two-grid high-order difference algorithm is developed by combining a small-scale variable-step high-order nonlinear difference algorithm on the coarse grid and a large-scale variable-step high-order linearized difference algorithm on the fine grid, in which the constructed piecewise bi-cubic Lagrange interpolation mapping operator is adopted to project the coarse-grid solution to the fine grid. Under the same temporal stepsize ratio restriction $ r_{k} < 4.8645 $  on the variable temporal stepsize,  unconditional and optimal fourth-order in space and second-order in time maximum-norm error estimates of the two-grid difference scheme is established. Finally, several numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed scheme.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":"112 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the lack of  corresponding analysis on appropriate mapping operator between two grids, high-order two-grid difference algorithms are rarely studied. In this paper, we firstly discuss the boundedness of a local bi-cubic Lagrange interpolation operator. And then, taking the semilinear parabolic equation as an example, we first construct a  variable-step high-order nonlinear difference algorithm using compact difference technique in space and  the second-order backward differentiation formula with variable temporal stepsize in time. With the help of discrete orthogonal convolution kernels, temporal-spatial error splitting idea  and a cut-off numerical technique, the unique solvability, maximum-norm stability and corresponding  error estimate of the high-order nonlinear difference scheme are established under assumption that the temporal stepsize ratio satisfies $ r_{k} := \tau_{k}/\tau_{k-1} < 4.8645 $. Then, an efficient two-grid high-order difference algorithm is developed by combining a small-scale variable-step high-order nonlinear difference algorithm on the coarse grid and a large-scale variable-step high-order linearized difference algorithm on the fine grid, in which the constructed piecewise bi-cubic Lagrange interpolation mapping operator is adopted to project the coarse-grid solution to the fine grid. Under the same temporal stepsize ratio restriction $ r_{k} < 4.8645 $  on the variable temporal stepsize,  unconditional and optimal fourth-order in space and second-order in time maximum-norm error estimates of the two-grid difference scheme is established. Finally, several numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对半线性抛物方程的高效双网格高阶紧凑差分方案与变步长 BDF2 方法
由于缺乏对两网格间适当映射算子的相应分析,高阶两网格差分算法很少被研究。本文首先讨论了局部双立方拉格朗日插值算子的有界性。然后,以半线性抛物线方程为例,首先利用空间上的紧凑差分技术和时间上可变时间步长的二阶反向微分公式,构建了一种可变步长的高阶非线性差分算法。借助离散正交卷积核、时空误差分割思想和截断数值技术,在时间步长比满足 $ r_{k} := \tau_{k}/\tau_{k-1} < 4.8645 $ 的假设条件下,建立了高阶非线性差分方案的唯一可解性、最大正态稳定性和相应的误差估计。然后,结合粗网格上的小尺度变步长高阶非线性差分算法和细网格上的大尺度变步长高阶线性化差分算法,建立了一种高效的双网格高阶差分算法,其中采用了构建的片断双立方拉格朗日插值映射算子将粗网格解投影到细网格。在相同的时间步长比限制下,$ r_{k}< 4.8645 $ 的限制下,建立了双网格差分方案的无条件最优空间四阶和时间二阶最大正则误差估计。最后,通过几个数值实验证明了所提方案的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Optimization of two-level methods for DG discretizations of reaction-diffusion equations Convergence of lattice Boltzmann methods with overrelaxation   for a nonlinear conservation law Study of a degenerate non-elliptic equation to model plasma heating Stability and space/time convergence of Störmer-Verlet time integration of the mixed formulation of linear wave equations An exactly divergence-free hybridized discontinuous Galerkin method for the generalized Boussinesq equations with singular heat source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1