Thermal analysis of implanter source head in radio-frequency inductively coupled plasma

Chang-Won Jeong, Choong-Mo Ryu, Hee-Lak Lee, Jong Jin Hwang, Seung Jae Moon
{"title":"Thermal analysis of implanter source head in radio-frequency inductively coupled plasma","authors":"Chang-Won Jeong, Choong-Mo Ryu, Hee-Lak Lee, Jong Jin Hwang, Seung Jae Moon","doi":"10.1116/6.0003060","DOIUrl":null,"url":null,"abstract":"The inductively coupled plasma-ion implanter is a closed vacuum, and the temperature increase in the source head owing to plasma generation in the chamber was predicted by numerical simulation and verified via measurements. The heat generation of the source head inside the vacuum chamber was photographed using an infrared thermal-imaging camera and set as the main temperature boundary condition for analysis. The showerhead temperature was confirmed through thermocouple measurements to verify the simulation and ensure reliability. An error of less than 1% was obtained for the aperture and aperture cover. The simulation-analysis results and measured showerhead results obtained from the thermocouple equipment exhibited an error of less than 2%.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"115 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inductively coupled plasma-ion implanter is a closed vacuum, and the temperature increase in the source head owing to plasma generation in the chamber was predicted by numerical simulation and verified via measurements. The heat generation of the source head inside the vacuum chamber was photographed using an infrared thermal-imaging camera and set as the main temperature boundary condition for analysis. The showerhead temperature was confirmed through thermocouple measurements to verify the simulation and ensure reliability. An error of less than 1% was obtained for the aperture and aperture cover. The simulation-analysis results and measured showerhead results obtained from the thermocouple equipment exhibited an error of less than 2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
射频电感耦合等离子体中植入器源头的热分析
电感耦合等离子体离子注入器是一个封闭的真空装置,通过数值模拟预测了腔体内等离子体产生导致源头温度升高的情况,并通过测量进行了验证。使用红外热成像相机拍摄了真空室内源头的发热情况,并将其设定为分析的主要温度边界条件。通过热电偶测量确认喷淋头温度,以验证模拟并确保可靠性。孔径和孔径盖的误差小于 1%。模拟分析结果与通过热电偶设备获得的喷淋头测量结果的误差小于 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1