Chang-Won Jeong, Choong-Mo Ryu, Hee-Lak Lee, Jong Jin Hwang, Seung Jae Moon
{"title":"Thermal analysis of implanter source head in radio-frequency inductively coupled plasma","authors":"Chang-Won Jeong, Choong-Mo Ryu, Hee-Lak Lee, Jong Jin Hwang, Seung Jae Moon","doi":"10.1116/6.0003060","DOIUrl":null,"url":null,"abstract":"The inductively coupled plasma-ion implanter is a closed vacuum, and the temperature increase in the source head owing to plasma generation in the chamber was predicted by numerical simulation and verified via measurements. The heat generation of the source head inside the vacuum chamber was photographed using an infrared thermal-imaging camera and set as the main temperature boundary condition for analysis. The showerhead temperature was confirmed through thermocouple measurements to verify the simulation and ensure reliability. An error of less than 1% was obtained for the aperture and aperture cover. The simulation-analysis results and measured showerhead results obtained from the thermocouple equipment exhibited an error of less than 2%.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"115 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The inductively coupled plasma-ion implanter is a closed vacuum, and the temperature increase in the source head owing to plasma generation in the chamber was predicted by numerical simulation and verified via measurements. The heat generation of the source head inside the vacuum chamber was photographed using an infrared thermal-imaging camera and set as the main temperature boundary condition for analysis. The showerhead temperature was confirmed through thermocouple measurements to verify the simulation and ensure reliability. An error of less than 1% was obtained for the aperture and aperture cover. The simulation-analysis results and measured showerhead results obtained from the thermocouple equipment exhibited an error of less than 2%.