{"title":"Incorporating novel bio-mineral materials of silicone-arrowroot modified starch for compressed powder","authors":"Pirada Sudprasert, Ananthaya Sansawat, Piangkhwan Kruapoo","doi":"10.55713/jmmm.v34i1.1803","DOIUrl":null,"url":null,"abstract":"Incorporating novel bio-mineral materials of silicone-arrowroot modified starch (SA) is an environmentally friendly technique to create compressed powder, thereby integrating biodiversity with sustainability and responding to the Bio-Circular-Green (BCG) economy. The SA had improved flowability and water resistance compared with non-modified arrowroot flour (A0), concurring with the Fourier Transform Infrared (FTIR), scanning electron microscope (SEM) analyses that indicated more hydrophobic properties. To investigate the formulated dust and compressed powder, three types of binders including magnesium stearate (Ms), isopropyl myristate (Im), and mineral oil (Mo) were examined. Powder samples of all binders at each concentration gave high water resistance with floating time of more than 15 min and high compressibility at 37.88% ± 0.91% to 42.59% ± 0.28% Carr’s index value and 1.61 ± 0.02 for the Hausner ratio. The hardness was 72.53 g ± 3.25 g to 98.00 g ± 3.78 g and drop test results differed depending on the density and adhesion properties of each formulation. The color stability was acceptable and not statistically significantly different when using different binders. Microbiological analysis of total bacteria count, yeast and mold in the silicone-arrowroot modified starch and pressed powder were <10 CFU∙g–1, while non fecal coliform, fecal coliform, Candida albicans, Staphylococcus aureus, and Clostridium spp. were not found.","PeriodicalId":502897,"journal":{"name":"Journal of Metals, Materials and Minerals","volume":"673 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metals, Materials and Minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i1.1803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating novel bio-mineral materials of silicone-arrowroot modified starch (SA) is an environmentally friendly technique to create compressed powder, thereby integrating biodiversity with sustainability and responding to the Bio-Circular-Green (BCG) economy. The SA had improved flowability and water resistance compared with non-modified arrowroot flour (A0), concurring with the Fourier Transform Infrared (FTIR), scanning electron microscope (SEM) analyses that indicated more hydrophobic properties. To investigate the formulated dust and compressed powder, three types of binders including magnesium stearate (Ms), isopropyl myristate (Im), and mineral oil (Mo) were examined. Powder samples of all binders at each concentration gave high water resistance with floating time of more than 15 min and high compressibility at 37.88% ± 0.91% to 42.59% ± 0.28% Carr’s index value and 1.61 ± 0.02 for the Hausner ratio. The hardness was 72.53 g ± 3.25 g to 98.00 g ± 3.78 g and drop test results differed depending on the density and adhesion properties of each formulation. The color stability was acceptable and not statistically significantly different when using different binders. Microbiological analysis of total bacteria count, yeast and mold in the silicone-arrowroot modified starch and pressed powder were <10 CFU∙g–1, while non fecal coliform, fecal coliform, Candida albicans, Staphylococcus aureus, and Clostridium spp. were not found.