Impact of Occlusion Masks on Gender Classification from Iris Texture

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2024-01-27 DOI:10.1049/2024/8526857
Claudio Yáñez, Juan E. Tapia, Claudio A. Perez, Christoph Busch
{"title":"Impact of Occlusion Masks on Gender Classification from Iris Texture","authors":"Claudio Yáñez,&nbsp;Juan E. Tapia,&nbsp;Claudio A. Perez,&nbsp;Christoph Busch","doi":"10.1049/2024/8526857","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Gender classification on normalized iris images has been previously attempted with varying degrees of success. In these previous studies, it has been shown that occlusion masks may introduce gender information; occlusion masks are used in iris recognition to remove non-iris elements. When, the goal is to classify the gender using exclusively the iris texture, the presence of gender information in the masks may result in apparently higher accuracy, thereby not reflecting the actual gender information present in the iris. However, no measures have been taken to eliminate this information while preserving as much iris information as possible. We propose a novel method to assess the gender information present in the iris more accurately by eliminating gender information in the masks. This consists of pairing iris with similar masks and different gender, generating a paired mask using the OR operator, and applying this mask to the iris. Additionally, we manually fix iris segmentation errors to study their impact on the gender classification. Our results show that occlusion masks can account for 6.92% of the gender classification accuracy on average. Therefore, works aiming to perform gender classification using the iris texture from normalized iris images should eliminate this correlation.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8526857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/8526857","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gender classification on normalized iris images has been previously attempted with varying degrees of success. In these previous studies, it has been shown that occlusion masks may introduce gender information; occlusion masks are used in iris recognition to remove non-iris elements. When, the goal is to classify the gender using exclusively the iris texture, the presence of gender information in the masks may result in apparently higher accuracy, thereby not reflecting the actual gender information present in the iris. However, no measures have been taken to eliminate this information while preserving as much iris information as possible. We propose a novel method to assess the gender information present in the iris more accurately by eliminating gender information in the masks. This consists of pairing iris with similar masks and different gender, generating a paired mask using the OR operator, and applying this mask to the iris. Additionally, we manually fix iris segmentation errors to study their impact on the gender classification. Our results show that occlusion masks can account for 6.92% of the gender classification accuracy on average. Therefore, works aiming to perform gender classification using the iris texture from normalized iris images should eliminate this correlation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遮挡蒙版对根据虹膜纹理进行性别分类的影响
以前曾尝试过对归一化虹膜图像进行性别分类,并取得了不同程度的成功。之前的研究表明,遮挡蒙版可能会引入性别信息;遮挡蒙版在虹膜识别中用于去除非虹膜元素。当目标是仅使用虹膜纹理进行性别分类时,遮挡蒙版中的性别信息可能会导致表面上更高的准确率,从而无法反映虹膜中的实际性别信息。然而,目前还没有采取任何措施来消除这些信息,同时尽可能多地保留虹膜信息。我们提出了一种新方法,通过消除面具中的性别信息来更准确地评估虹膜中的性别信息。这包括将具有相似掩码和不同性别的虹膜配对,使用 OR 运算符生成配对掩码,并将此掩码应用于虹膜。此外,我们还手动修正了虹膜分割错误,以研究其对性别分类的影响。我们的结果表明,闭塞掩码平均可影响 6.92% 的性别分类准确率。因此,旨在利用归一化虹膜图像中的虹膜纹理进行性别分类的工作应消除这种相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1