Starlit: Privacy-Preserving Federated Learning to Enhance Financial Fraud Detection

A. Abadi, Bradley Doyle, Francesco Gini, Kieron Guinamard, S. K. Murakonda, Jack Liddell, Paul Mellor, S. Murdoch, Mohammad Naseri, Hector Page, George Theodorakopoulos, Suzanne Weller
{"title":"Starlit: Privacy-Preserving Federated Learning to Enhance Financial Fraud Detection","authors":"A. Abadi, Bradley Doyle, Francesco Gini, Kieron Guinamard, S. K. Murakonda, Jack Liddell, Paul Mellor, S. Murdoch, Mohammad Naseri, Hector Page, George Theodorakopoulos, Suzanne Weller","doi":"10.48550/arXiv.2401.10765","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is a data-minimization approach enabling collaborative model training across diverse clients with local data, avoiding direct data exchange. However, state-of-the-art FL solutions to identify fraudulent financial transactions exhibit a subset of the following limitations. They (1) lack a formal security definition and proof, (2) assume prior freezing of suspicious customers' accounts by financial institutions (limiting the solutions' adoption), (3) scale poorly, involving either $O(n^2)$ computationally expensive modular exponentiation (where $n$ is the total number of financial institutions) or highly inefficient fully homomorphic encryption, (4) assume the parties have already completed the identity alignment phase, hence excluding it from the implementation, performance evaluation, and security analysis, and (5) struggle to resist clients' dropouts. This work introduces Starlit, a novel scalable privacy-preserving FL mechanism that overcomes these limitations. It has various applications, such as enhancing financial fraud detection, mitigating terrorism, and enhancing digital health. We implemented Starlit and conducted a thorough performance analysis using synthetic data from a key player in global financial transactions. The evaluation indicates Starlit's scalability, efficiency, and accuracy.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"411 2","pages":"90"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.10765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is a data-minimization approach enabling collaborative model training across diverse clients with local data, avoiding direct data exchange. However, state-of-the-art FL solutions to identify fraudulent financial transactions exhibit a subset of the following limitations. They (1) lack a formal security definition and proof, (2) assume prior freezing of suspicious customers' accounts by financial institutions (limiting the solutions' adoption), (3) scale poorly, involving either $O(n^2)$ computationally expensive modular exponentiation (where $n$ is the total number of financial institutions) or highly inefficient fully homomorphic encryption, (4) assume the parties have already completed the identity alignment phase, hence excluding it from the implementation, performance evaluation, and security analysis, and (5) struggle to resist clients' dropouts. This work introduces Starlit, a novel scalable privacy-preserving FL mechanism that overcomes these limitations. It has various applications, such as enhancing financial fraud detection, mitigating terrorism, and enhancing digital health. We implemented Starlit and conducted a thorough performance analysis using synthetic data from a key player in global financial transactions. The evaluation indicates Starlit's scalability, efficiency, and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星光通过保护隐私的联合学习加强金融欺诈检测
联合学习(FL)是一种数据最小化的方法,可使不同客户利用本地数据进行协作模型训练,避免直接交换数据。然而,用于识别欺诈性金融交易的最先进 FL 解决方案表现出以下局限性。它们(1)缺乏正式的安全定义和证明;(2)假定金融机构事先冻结了可疑客户的账户(限制了解决方案的采用);(3)扩展性差,要么涉及计算成本高昂的模块指数化($O(n^2)$,其中$n$是金融机构的总数),要么涉及效率极低的全同态加密;(4)假定各方已完成身份对齐阶段,因此将其排除在实施、性能评估和安全分析之外;以及(5)难以抵御客户的退出。这项工作介绍了一种新型可扩展的隐私保护 FL 机制 Starlit,它克服了这些限制。它有多种应用,如加强金融欺诈检测、减少恐怖主义和提高数字健康水平。我们实现了 Starlit,并利用全球金融交易中一个重要参与者的合成数据进行了全面的性能分析。评估结果表明了 Starlit 的可扩展性、效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSFHET: Optimized Software for FHE over the Torus 1/0 Shades of UC: Photonic Side-Channel Analysis of Universal Circuits White-box filtering attacks breaking SEL masking: from exponential to polynomial time Optimized Homomorphic Evaluation of Boolean Functions Time Sharing - A Novel Approach to Low-Latency Masking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1