Platelet Modeling in DHF Patients Using Local Polynomial Semiparametric Regression on Longitudinal Data

Tiani Wahyu Utami, Nur Chamidah, T. Saifudin
{"title":"Platelet Modeling in DHF Patients Using Local Polynomial Semiparametric Regression on Longitudinal Data","authors":"Tiani Wahyu Utami, Nur Chamidah, T. Saifudin","doi":"10.31764/jtam.v8i1.17427","DOIUrl":null,"url":null,"abstract":"Regression analysis is one of the statistical methods used to model the relationship between response variables and predictor variables. Semiparametric regression is a combination of parametric and nonparametric regression. The estimator used in estimating the semiparametric regression model in this research is the Local Polynomial. Longitudinal data can be found in the health sector, including dengue hemorrhagic fever (DHF) data. The laboratory criteria for indication of DHF is thrombocytopenia. This research aims to obtain platelets model for DHF patients that can be used for forecasting so that it is hoped that it can provide information to the medical team in treating DHF patients. The estimated model used is Local Polynomial semiparametric regression on longitudinal data. The response variables in this research were platelets of DHF patients, which were influenced by hemoglobin as parametric predictor variable and examination time while hospitalized as nonparametric predictor variable. In the local polynomial regression model, it is necessary to select the optimal bandwidth and polynomial order method, GCV. The optimum bandwidth selection based on the GCV method obtained is 1.5 and polynomial order of 2, then applied to DHF patient platelet data, producing an estimated local polynomial semiparametric regression model that follows the actual data pattern. Modeling the platelets of DHF patients obtained using a local polynomial estimator resulted in an R2 value of 84.25% and MAPE of 4.5%, indicating highly accurate forecasting, so it can be concluded that the resulting model is better at predicting.","PeriodicalId":489521,"journal":{"name":"JTAM (Jurnal Teori dan Aplikasi Matematika)","volume":"403 4-6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTAM (Jurnal Teori dan Aplikasi Matematika)","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.31764/jtam.v8i1.17427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression analysis is one of the statistical methods used to model the relationship between response variables and predictor variables. Semiparametric regression is a combination of parametric and nonparametric regression. The estimator used in estimating the semiparametric regression model in this research is the Local Polynomial. Longitudinal data can be found in the health sector, including dengue hemorrhagic fever (DHF) data. The laboratory criteria for indication of DHF is thrombocytopenia. This research aims to obtain platelets model for DHF patients that can be used for forecasting so that it is hoped that it can provide information to the medical team in treating DHF patients. The estimated model used is Local Polynomial semiparametric regression on longitudinal data. The response variables in this research were platelets of DHF patients, which were influenced by hemoglobin as parametric predictor variable and examination time while hospitalized as nonparametric predictor variable. In the local polynomial regression model, it is necessary to select the optimal bandwidth and polynomial order method, GCV. The optimum bandwidth selection based on the GCV method obtained is 1.5 and polynomial order of 2, then applied to DHF patient platelet data, producing an estimated local polynomial semiparametric regression model that follows the actual data pattern. Modeling the platelets of DHF patients obtained using a local polynomial estimator resulted in an R2 value of 84.25% and MAPE of 4.5%, indicating highly accurate forecasting, so it can be concluded that the resulting model is better at predicting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向数据的局部多项式半参数回归建立 DHF 患者的血小板模型
回归分析是用于模拟响应变量与预测变量之间关系的统计方法之一。半参数回归是参数回归和非参数回归的结合。本研究在估计半参数回归模型时使用的估计器是局部多项式。在卫生部门可以找到纵向数据,包括登革出血热(DHF)数据。登革出血热的实验室诊断标准是血小板减少。本研究旨在获得 DHF 患者的血小板模型,并将其用于预测,从而为医疗团队治疗 DHF 患者提供信息。使用的估计模型是纵向数据的局部多项式半参数回归。本研究的反应变量是 DHF 患者的血小板,血小板受血红蛋白的影响,是参数预测变量;住院期间的检查时间是非参数预测变量。在局部多项式回归模型中,需要选择最优带宽和多项式阶次方法 GCV。根据 GCV 方法得到的最佳带宽选择为 1.5,多项式阶数为 2,然后将其应用于 DHF 患者血小板数据,产生了一个符合实际数据模式的估计局部多项式半参数回归模型。使用局部多项式估计法对 DHF 患者的血小板进行建模,得到的 R2 值为 84.25%,MAPE 为 4.5%,表明预测准确度很高,因此可以得出结论,所得到的模型预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rainfall Forecasting Using an Adaptive Neuro-Fuzzy Inference System with a Grid Partitioning Approach to Mitigating Flood Disasters Projection of PT Aneka Tambang Tbk Share Risk Value Based on Backpropagation Artificial Neural Network Forecasting Result Exploring Multivariate Copula Models and Fuzzy Interest Rates in Assessing Family Annuity Products Development of a Desmos-Assisted Planar Analytic Geometry Textbook to Support High Order Thinking Skills Identifying Factors Affecting Waste Generation in West Java in 2021 Using Spatial Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1