Analysing the Contributing Factors to Activity Recognition with Loose Clothing

Renad Allagani, Tianchen Shen, Matthew Howard
{"title":"Analysing the Contributing Factors to Activity Recognition with Loose Clothing","authors":"Renad Allagani, Tianchen Shen, Matthew Howard","doi":"10.3390/engproc2023052010","DOIUrl":null,"url":null,"abstract":": The integration of sensors into garments has paved the way for human activity recognition (AR), enabling users to engage in extended human motion recordings. The inherent fluidity of loose clothing allows it to mirror the wearer’s movements. From a statistical standpoint, clothing captures additional valuable insights beyond rigid body motions, improving AR. This work demonstrates how fabric’s orientation, layering and width contribute to the enhanced performance of AR with clothing in periodic motion. Experiments are reported in which a scotch yoke and a KUKA robot manipulator are used to induce the periodic motion of fabric cloth at different frequencies. These reveal that clothing-attached sensors exhibit higher frequency classification accuracy among sensors with an improvement of 27% for perpendicular-oriented fabric, 18% for triple-layered fabric, and 9% for large-width fabric, exceeding that seen with rigid attached sensors.","PeriodicalId":516632,"journal":{"name":"E-Textiles 2023","volume":"10 2-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Textiles 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2023052010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The integration of sensors into garments has paved the way for human activity recognition (AR), enabling users to engage in extended human motion recordings. The inherent fluidity of loose clothing allows it to mirror the wearer’s movements. From a statistical standpoint, clothing captures additional valuable insights beyond rigid body motions, improving AR. This work demonstrates how fabric’s orientation, layering and width contribute to the enhanced performance of AR with clothing in periodic motion. Experiments are reported in which a scotch yoke and a KUKA robot manipulator are used to induce the periodic motion of fabric cloth at different frequencies. These reveal that clothing-attached sensors exhibit higher frequency classification accuracy among sensors with an improvement of 27% for perpendicular-oriented fabric, 18% for triple-layered fabric, and 9% for large-width fabric, exceeding that seen with rigid attached sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析宽松服装对活动识别的影响因素
:将传感器集成到服装中为人类活动识别(AR)铺平了道路,使用户能够进行长时间的人体运动记录。宽松衣物固有的流动性使其能够反映穿着者的动作。从统计学的角度来看,除了刚体运动之外,衣物还能捕捉到更多有价值的信息,从而提高 AR 的性能。这项工作展示了织物的方向、分层和宽度如何在周期性运动中通过服装提高增强现实(AR)性能。在实验中,我们使用了苏格兰轭和库卡机器人操纵器,以不同的频率诱导织物的周期性运动。实验结果表明,附着在衣物上的传感器在各种传感器中表现出更高的频率分类准确性,垂直方向织物的分类准确性提高了 27%,三层织物的分类准确性提高了 18%,大宽度织物的分类准确性提高了 9%,超过了刚性附着传感器的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stitching as a Feasible Connection Method for Washable Textile-Encapsulated Flexible Solar Cells A Textile Solid-State Zinc-Ion Capacitor Statement of Peer Review Improved Skin–Electrode Impedance Characteristics of Embroidered Textile Electrodes for Sustainable Long-Term EMG Monitoring Controlled Sweat Removal in Performance Wear Using Electrically Activated Textiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1