Molecular modelling, Synthesis and Antiproliferative Evaluation of New Phenyldiazenyl)-Pyrazol Schiff Base Derivatives

Duha E. Taha, Monther F. Mahdi, Ayad M. R. Raauf
{"title":"Molecular modelling, Synthesis and Antiproliferative Evaluation of New Phenyldiazenyl)-Pyrazol Schiff Base Derivatives","authors":"Duha E. Taha, Monther F. Mahdi, Ayad M. R. Raauf","doi":"10.32947/ajps.v24i1.999","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most prevalent worldwide. In addition, it is also the most common cause of cancer-related deaths worldwide, with around 1.8 million new cases annually. With a 5-year survival rate of fewer than 20%.\nCytotoxic medicines are commonly employed in cancer treatment. Although the medicine improves patients' quality of life, several disadvantages diminish its efficacy. This necessitates developing new effective strategies that target tumors with minimal adverse effects. This research aims to overcome these issues by synthesizing a new series of phenyldiazenyl)-pyrazol schiff base derivatives by utilizing the molecular docking (GOLD) suite program and the pharmacokinetic properties determination by utilizing (Swiss) ADME suite; The most appropriate-fitting compounds were subsequently produced and confirmed using spectrum analysis (FTIR, 1HNMR, and 13 CNMR). MTT in vitro assay were performed to assess of antiproliferative activities against A549 lung cancer cell lines. The antiproliferative study showed that compound 3a had an inhibitory concentration (IC50 of 17.37 µM) on lung cancer cells (A549), which was significantly higher inhibitory activity than Erlotinib (IC50 = 25.06 µM). While compound 3b had an inhibitory activity comparable to the reference drug's, The IC50 values for compounds 3c, 3d, and 3e were 47.48, 45.56, and 33.05 µM, respectively","PeriodicalId":7406,"journal":{"name":"Al Mustansiriyah Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al Mustansiriyah Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32947/ajps.v24i1.999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is the most prevalent worldwide. In addition, it is also the most common cause of cancer-related deaths worldwide, with around 1.8 million new cases annually. With a 5-year survival rate of fewer than 20%. Cytotoxic medicines are commonly employed in cancer treatment. Although the medicine improves patients' quality of life, several disadvantages diminish its efficacy. This necessitates developing new effective strategies that target tumors with minimal adverse effects. This research aims to overcome these issues by synthesizing a new series of phenyldiazenyl)-pyrazol schiff base derivatives by utilizing the molecular docking (GOLD) suite program and the pharmacokinetic properties determination by utilizing (Swiss) ADME suite; The most appropriate-fitting compounds were subsequently produced and confirmed using spectrum analysis (FTIR, 1HNMR, and 13 CNMR). MTT in vitro assay were performed to assess of antiproliferative activities against A549 lung cancer cell lines. The antiproliferative study showed that compound 3a had an inhibitory concentration (IC50 of 17.37 µM) on lung cancer cells (A549), which was significantly higher inhibitory activity than Erlotinib (IC50 = 25.06 µM). While compound 3b had an inhibitory activity comparable to the reference drug's, The IC50 values for compounds 3c, 3d, and 3e were 47.48, 45.56, and 33.05 µM, respectively
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型苯二氮基吡唑席夫碱衍生物的分子建模、合成和抗增殖评价
肺癌是全球发病率最高的癌症。此外,它也是全球最常见的癌症相关死亡原因,每年新增病例约 180 万。细胞毒性药物是治疗癌症的常用药物。虽然这种药物能改善患者的生活质量,但它的一些缺点削弱了其疗效。因此,有必要开发新的有效策略,在靶向肿瘤的同时将不良反应降至最低。本研究旨在克服这些问题,利用分子对接(GOLD)套件程序合成了一系列新的苯基二氮杂环唑-席夫碱衍生物,并利用(Swiss)ADME 套件进行了药代动力学特性测定;随后生成了最合适的化合物,并利用光谱分析(傅立叶变换红外光谱、1HNMR 和 13 CNMR)进行了确认。)对 A549 肺癌细胞株进行了 MTT 体外检测,以评估其抗增殖活性。抗增殖研究表明,化合物 3a 对肺癌细胞(A549)的抑制浓度(IC50 为 17.37 µM)明显高于厄洛替尼(IC50 = 25.06 µM)。化合物 3c、3d 和 3e 的 IC50 值分别为 47.48、45.56 和 33.05 µM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect Of Different Variables On The Formulation Of Sodium Alginate Beads Evaluating Serum Calprotectin and Serum Oncostatin M Levels as Diagnostic Markers in Crohn's Disease and Ulcerative Colitis Iraqi Patients. Research Effects Of Topical Petroleum Ether and Ethyl Acetate Fractions from Grape Seed Extract on Imiquimod-Induced Psoriasis Like Skin Inflammation in Mice Evaluation of C-Reactive Protein, Interleukin-6, and Neutrophil-Lymphocyte Ratio as Inflammatory Markers in Patients with Chronic Bronchitis Taking Oral Prednisolone in Maysan City Population Analysis of Favipiravir Adverse Drug Reactions during COVID-19 Pandemic: A Retrospective Study Based on Iraqi Pharmacovigilance Center Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1