A Novel Multi-Stage Prompting Approach for Language Agnostic MCQ Generation using GPT

S. Maity, Aniket Deroy, Sudeshna Sarkar
{"title":"A Novel Multi-Stage Prompting Approach for Language Agnostic MCQ Generation using GPT","authors":"S. Maity, Aniket Deroy, Sudeshna Sarkar","doi":"10.48550/arXiv.2401.07098","DOIUrl":null,"url":null,"abstract":"We introduce a multi-stage prompting approach (MSP) for the generation of multiple choice questions (MCQs), harnessing the capabilities of GPT models such as text-davinci-003 and GPT-4, renowned for their excellence across various NLP tasks. Our approach incorporates the innovative concept of chain-of-thought prompting, a progressive technique in which the GPT model is provided with a series of interconnected cues to guide the MCQ generation process. Automated evaluations consistently demonstrate the superiority of our proposed MSP method over the traditional single-stage prompting (SSP) baseline, resulting in the production of high-quality distractors. Furthermore, the one-shot MSP technique enhances automatic evaluation results, contributing to improved distractor generation in multiple languages, including English, German, Bengali, and Hindi. In human evaluations, questions generated using our approach exhibit superior levels of grammaticality, answerability, and difficulty, highlighting its efficacy in various languages.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"2 4","pages":"268-277"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.07098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a multi-stage prompting approach (MSP) for the generation of multiple choice questions (MCQs), harnessing the capabilities of GPT models such as text-davinci-003 and GPT-4, renowned for their excellence across various NLP tasks. Our approach incorporates the innovative concept of chain-of-thought prompting, a progressive technique in which the GPT model is provided with a series of interconnected cues to guide the MCQ generation process. Automated evaluations consistently demonstrate the superiority of our proposed MSP method over the traditional single-stage prompting (SSP) baseline, resulting in the production of high-quality distractors. Furthermore, the one-shot MSP technique enhances automatic evaluation results, contributing to improved distractor generation in multiple languages, including English, German, Bengali, and Hindi. In human evaluations, questions generated using our approach exhibit superior levels of grammaticality, answerability, and difficulty, highlighting its efficacy in various languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 GPT 生成与语言无关的 MCQ 的新型多阶段提示方法
我们介绍了一种用于生成多选题(MCQ)的多阶段提示方法(MSP),它利用了文本-davinci-003 和 GPT-4 等 GPT 模型的能力,这些模型因其在各种 NLP 任务中的卓越表现而闻名。我们的方法采用了思维链提示的创新概念,这是一种渐进技术,为 GPT 模型提供了一系列相互关联的提示,以指导 MCQ 生成过程。自动评估结果一致表明,我们提出的 MSP 方法优于传统的单阶段提示 (SSP),能生成高质量的干扰项。此外,一次性 MSP 技术还增强了自动评估结果,有助于改进多种语言(包括英语、德语、孟加拉语和印地语)的干扰项生成。在人工评估中,使用我们的方法生成的问题在语法、可回答性和难度方面都表现出了卓越的水平,突出了它在各种语言中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1