Aaina Thapa, Jutta Escher, E. Chimanski, Marc Dupuis, S. P'eru, W. Younes
{"title":"Predicting nucleon-nucleus scattering observables using nuclear structure theory","authors":"Aaina Thapa, Jutta Escher, E. Chimanski, Marc Dupuis, S. P'eru, W. Younes","doi":"10.1051/epjconf/202429206003","DOIUrl":null,"url":null,"abstract":"Developing a predictive capability for inelastic scattering will find applications in multiple areas. Experimental data for neutron-nucleus inelastic scattering is limited and thus one needs a robust theoretical framework to complement it. Charged-particle inelastic scattering can be used as a surrogate for (n, γ) reactions to predict capture cross sections for unstable nuclei. Our work uses microscopic nuclear structure calculations for spherical nuclei to obtain nucleon-nucleus scattering potentials and calculate cross sections for these processes. We implement the Jeukenne, Lejeune, Mahaux (JLM) semi-microscopic folding approach, where the medium effects on nuclear interaction are parameterized in nuclear matter to obtain the nucleon-nucleon (NN) interaction in a medium at positive energies. We solve for the nuclear ground state using the Hartree-Fock-Bogliubov (HFB) many-body method, assuming the nucleons within the nucleus interact via the Gogny-D1M potential. The vibrational excited states of the target nucleus are calculated using the quasi-particle random phase approximation (QRPA). We demonstrate our approach for spherical nuclei in the medium-mass region, showing scattering results for the 90Zr nucleus.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"37 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202429206003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a predictive capability for inelastic scattering will find applications in multiple areas. Experimental data for neutron-nucleus inelastic scattering is limited and thus one needs a robust theoretical framework to complement it. Charged-particle inelastic scattering can be used as a surrogate for (n, γ) reactions to predict capture cross sections for unstable nuclei. Our work uses microscopic nuclear structure calculations for spherical nuclei to obtain nucleon-nucleus scattering potentials and calculate cross sections for these processes. We implement the Jeukenne, Lejeune, Mahaux (JLM) semi-microscopic folding approach, where the medium effects on nuclear interaction are parameterized in nuclear matter to obtain the nucleon-nucleon (NN) interaction in a medium at positive energies. We solve for the nuclear ground state using the Hartree-Fock-Bogliubov (HFB) many-body method, assuming the nucleons within the nucleus interact via the Gogny-D1M potential. The vibrational excited states of the target nucleus are calculated using the quasi-particle random phase approximation (QRPA). We demonstrate our approach for spherical nuclei in the medium-mass region, showing scattering results for the 90Zr nucleus.