Hongyan Duan, Zengwang Zhang, Yingjian Zhao, Yang Liu, Sunqiang Yue, Hong He
{"title":"Effect of grain size on fatigue strength of 304 stainless steel","authors":"Hongyan Duan, Zengwang Zhang, Yingjian Zhao, Yang Liu, Sunqiang Yue, Hong He","doi":"10.1515/htmp-2022-0314","DOIUrl":null,"url":null,"abstract":"\n In this study, three types of 304 stainless steel samples with different strengths were prepared by refining the grain size through rolling. The microstructure of the samples was observed by electron microscopy. The influence of grain size on the static tensile properties and fatigue strength of the material is mainly attributed to changes in the plastic deformation fracture mechanism and micro-deformation mechanism. In addition, a new fatigue strength prediction model is proposed based on the influence of tensile strength and work-hardening capacity. Compared with the staircase method and Basquin formula models, the proposed model maintains the accuracy of fatigue strength prediction while reducing the cost of fatigue experiments. This provides a new approach for predicting the fatigue strength of specific materials and improving anti-fatigue design capabilities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"10 7","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0314","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, three types of 304 stainless steel samples with different strengths were prepared by refining the grain size through rolling. The microstructure of the samples was observed by electron microscopy. The influence of grain size on the static tensile properties and fatigue strength of the material is mainly attributed to changes in the plastic deformation fracture mechanism and micro-deformation mechanism. In addition, a new fatigue strength prediction model is proposed based on the influence of tensile strength and work-hardening capacity. Compared with the staircase method and Basquin formula models, the proposed model maintains the accuracy of fatigue strength prediction while reducing the cost of fatigue experiments. This provides a new approach for predicting the fatigue strength of specific materials and improving anti-fatigue design capabilities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.