H. Zhuk, Yuriy Ivanov, L. Onopa, S.P. Krushnevych, Mehrzad Soltanibereshne
{"title":"Effectiveness of Water-Amine Combined Process for CO2 Extraction from Biogas","authors":"H. Zhuk, Yuriy Ivanov, L. Onopa, S.P. Krushnevych, Mehrzad Soltanibereshne","doi":"10.2478/rtuect-2024-0012","DOIUrl":null,"url":null,"abstract":"\n The EU countries are implementing biomethane production projects from biogas, supplying it to the natural gas distribution grid, or using it as motor fuel. It is also extremely relevant for Ukraine, supposing the problems with gas import due to Russian aggression. Biogas production from landfills, agriculture waste, and sewage is already implemented in Ukraine, so the next step must be biomethane production on an industrial scale and the selection of biogas separation technology is important. Using 11 years of industrial experience in biogas production from landfills, wide experience of the different methane-containing gases separations, and small companies’ industrial possibilities, the most applicable separation technologies for Ukraine were selected: amine, water, and combined water amine carbon dioxide separation. These technologies had compared using computer simulation with real landfill biogas flow rate debt. Results of a software simulation of the most applicable water-amine absorption technology were verified using a laboratory setup. For carbon dioxide concentration in biogas at 32–42 % vol., the specific energy consumption when using water absorption is on average 2 times less compared to amine absorption, but at the same time, the loss of methane due to its solubility in water during water absorption amounted to 7.1–7.6 %, with practically no losses in amine absorption, and minor losses at 0.17–2.8 % in combined water-amine technology. The energy consumption of combined water-amine absorption is comparable to that of water absorption due to: a) reduction of heat losses for the regeneration process of saturated amine absorbent, as part of carbon dioxide has already been removed with water technology; b) using the methane excess to compensate power consumption of the biogas compressor during the preliminary water absorption of carbon dioxide and/or to compensate heat costs of the saturated amine absorbent regeneration","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2024-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The EU countries are implementing biomethane production projects from biogas, supplying it to the natural gas distribution grid, or using it as motor fuel. It is also extremely relevant for Ukraine, supposing the problems with gas import due to Russian aggression. Biogas production from landfills, agriculture waste, and sewage is already implemented in Ukraine, so the next step must be biomethane production on an industrial scale and the selection of biogas separation technology is important. Using 11 years of industrial experience in biogas production from landfills, wide experience of the different methane-containing gases separations, and small companies’ industrial possibilities, the most applicable separation technologies for Ukraine were selected: amine, water, and combined water amine carbon dioxide separation. These technologies had compared using computer simulation with real landfill biogas flow rate debt. Results of a software simulation of the most applicable water-amine absorption technology were verified using a laboratory setup. For carbon dioxide concentration in biogas at 32–42 % vol., the specific energy consumption when using water absorption is on average 2 times less compared to amine absorption, but at the same time, the loss of methane due to its solubility in water during water absorption amounted to 7.1–7.6 %, with practically no losses in amine absorption, and minor losses at 0.17–2.8 % in combined water-amine technology. The energy consumption of combined water-amine absorption is comparable to that of water absorption due to: a) reduction of heat losses for the regeneration process of saturated amine absorbent, as part of carbon dioxide has already been removed with water technology; b) using the methane excess to compensate power consumption of the biogas compressor during the preliminary water absorption of carbon dioxide and/or to compensate heat costs of the saturated amine absorbent regeneration
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.