A Target Recognition Method of Small Sample Based on RCS Data

Ruocheng Ma, Haoyang Liu, Jun Yu, Zhi-yi Hu
{"title":"A Target Recognition Method of Small Sample Based on RCS Data","authors":"Ruocheng Ma, Haoyang Liu, Jun Yu, Zhi-yi Hu","doi":"10.2478/ijanmc-2024-0001","DOIUrl":null,"url":null,"abstract":"\n During the training of target recognition models based on Radar Cross Section (RCS) data, a persistent challenge arises in sampling due to the inherent difficulty in acquiring a sufficient number of samples. This scarcity of data poses a significant impediment to the effective training of models, resulting in diminished accuracy in target recognition. To address this issue, this article proposes a target classification method based on RCS data under small sample conditions. The approach adopts the fundamental concept of Model-Agnostic Meta-Learning (MAML) to train the target recognition model, enhancing the structure of MAML model. An hourglass-shaped convolution layer is introduced to the input layer, with an additional convolution layer preceding the output layer, and a switch to a central loss function. To substantiate the efficacy of the improved MAML model, comprehensive comparative analyses are conducted with benchmark models, including MAML, ResNet 18-layers, Long Short-Term Memory (LSTM), among others. Experimental results conclusively demonstrate the superior performance of the refined MAML model in target recognition under conditions of limited samples, attaining an average prediction accuracy of 85.62%. This signifies a noteworthy 5-percentage-point improvement compared to the baseline model prior to the introduced enhancements.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"15 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijanmc-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the training of target recognition models based on Radar Cross Section (RCS) data, a persistent challenge arises in sampling due to the inherent difficulty in acquiring a sufficient number of samples. This scarcity of data poses a significant impediment to the effective training of models, resulting in diminished accuracy in target recognition. To address this issue, this article proposes a target classification method based on RCS data under small sample conditions. The approach adopts the fundamental concept of Model-Agnostic Meta-Learning (MAML) to train the target recognition model, enhancing the structure of MAML model. An hourglass-shaped convolution layer is introduced to the input layer, with an additional convolution layer preceding the output layer, and a switch to a central loss function. To substantiate the efficacy of the improved MAML model, comprehensive comparative analyses are conducted with benchmark models, including MAML, ResNet 18-layers, Long Short-Term Memory (LSTM), among others. Experimental results conclusively demonstrate the superior performance of the refined MAML model in target recognition under conditions of limited samples, attaining an average prediction accuracy of 85.62%. This signifies a noteworthy 5-percentage-point improvement compared to the baseline model prior to the introduced enhancements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 RCS 数据的小样本目标识别方法
在基于雷达截面(RCS)数据的目标识别模型训练过程中,由于难以获得足够数量的样本,采样工作一直面临挑战。数据的稀缺严重阻碍了模型的有效训练,从而降低了目标识别的准确性。针对这一问题,本文提出了一种基于小样本条件下 RCS 数据的目标分类方法。该方法采用模型诊断元学习(MAML)的基本概念来训练目标识别模型,增强了 MAML 模型的结构。在输入层引入了一个沙漏形卷积层,在输出层之前增加了一个卷积层,并转换为中心损失函数。为了证明改进后的 MAML 模型的有效性,我们与基准模型进行了全面的比较分析,包括 MAML、ResNet 18 层、长短期记忆(LSTM)等。实验结果充分证明,在样本有限的条件下,改进后的 MAML 模型在目标识别方面表现出色,平均预测准确率达到 85.62%。与引入增强功能之前的基线模型相比,这意味着显著提高了 5 个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Landing Control of Aircraft Based on Cognitive Load Theory and DDPG Research on Simulation Approximate Solution Strategy for Complex Kinematic Models Indoor Robot SLAM with Multi-Sensor Fusion Securing Operating Systems (OS): A Comprehensive Approach to Security with Best Practices and Techniques Lightweight Low-Altitude UAV Object Detection Based on Improved YOLOv5s
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1