{"title":"Abrasion performance and failure mechanism of fiber yarns based on molecular segmental differences","authors":"Hongxia Li, Guifang He, Zhengjie Zhao, Qingyang Liu, Junben Wang, Yanzheng Yin, Yuli Cui, Xin Ning, Fanggang Ning","doi":"10.1177/15589250241228263","DOIUrl":null,"url":null,"abstract":"With the development of lightweight engineering, load-bearing structures such as synthetic fiber ropes are being increasingly used in engineering projects. During the process of repeated stretching or bending, abrasion occurs between the yarns of fiber assemblies like ropes. Fatigue failure caused by abrasion between yarns is one of the main reasons for the failure of such fiber assemblies. Different chain segments of fiber assemblies exhibit different properties. This study takes the four fibers of flexible chain fibers Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene glycol terephthalate (PET) and rigid chain fibers Poly-p-phenylene terephthamide (PPTA) and Polyarylate (PAR), which are widely used in ropes and cables, as the research materials, and explores the influence of abrasion frequency and yarn tension on different chain segment fibers. To explore the failure and influencing factors of rigid chain and flexible chain fibers abrasion leads to fiber assemblies like those ropes. Based on the observation and analysis of the abrasion zone temperature, yarn state, and wear debris morphology of failed yarns, an abrasion failure mechanism is proposed, providing guidance for the design and application of fatigue-resistant products for ropes.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250241228263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1
Abstract
With the development of lightweight engineering, load-bearing structures such as synthetic fiber ropes are being increasingly used in engineering projects. During the process of repeated stretching or bending, abrasion occurs between the yarns of fiber assemblies like ropes. Fatigue failure caused by abrasion between yarns is one of the main reasons for the failure of such fiber assemblies. Different chain segments of fiber assemblies exhibit different properties. This study takes the four fibers of flexible chain fibers Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene glycol terephthalate (PET) and rigid chain fibers Poly-p-phenylene terephthamide (PPTA) and Polyarylate (PAR), which are widely used in ropes and cables, as the research materials, and explores the influence of abrasion frequency and yarn tension on different chain segment fibers. To explore the failure and influencing factors of rigid chain and flexible chain fibers abrasion leads to fiber assemblies like those ropes. Based on the observation and analysis of the abrasion zone temperature, yarn state, and wear debris morphology of failed yarns, an abrasion failure mechanism is proposed, providing guidance for the design and application of fatigue-resistant products for ropes.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.