Examining the Use of Generative Adversarial Network for Predicting Tumor Malignancy

J. Bhuvana, Megha Pandeya, Deepak Kumar
{"title":"Examining the Use of Generative Adversarial Network for Predicting Tumor Malignancy","authors":"J. Bhuvana, Megha Pandeya, Deepak Kumar","doi":"10.1109/ICOCWC60930.2024.10470583","DOIUrl":null,"url":null,"abstract":"This study's paper examines using a generative opposed network as an excellent way to predict the malignancy of tumors in a clinically applicable manner. The examination outcomes imply that the DCGAN-based total version can make surprisingly dependable predictions of tumor malignancy compared to other machine-mastering strategies. Furthermore, the authors additionally propose that the DCGAN-based total version may be hired in scientific applications with promising effects.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"3 4","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study's paper examines using a generative opposed network as an excellent way to predict the malignancy of tumors in a clinically applicable manner. The examination outcomes imply that the DCGAN-based total version can make surprisingly dependable predictions of tumor malignancy compared to other machine-mastering strategies. Furthermore, the authors additionally propose that the DCGAN-based total version may be hired in scientific applications with promising effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究生成式对抗网络在预测肿瘤恶性程度中的应用
本研究论文探讨了使用生成式对立网络以临床适用的方式预测肿瘤恶性程度的绝佳方法。研究结果表明,与其他机器管理策略相比,基于 DCGAN 的总版本可以对肿瘤的恶性程度做出令人惊讶的可靠预测。此外,作者还建议在科学应用中采用基于 DCGAN 的总版本,并取得良好效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Exploration of Data Augmentation Techniques in Ensemble Learning for Medical Image Segmentation with Transfer Learning An Investigation of the Use of Applied Cryptography for Preventing Unauthorized Access Fuzzy Optics Enabled Antenna Model for Push-To-Talk Communication in Underwater Networks Assessing Optimal Hyper parameters of Deep Neural Networks on Cancers Datasets Performance Comparison of Routing Protocols for Mobile Wireless Mesh Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1