Exploring the Potential of Recurrent Neural Networks for Medical Image Segmentation

Aaditya Jain, Sanjeev Kumar Mandal, Monika Abrol
{"title":"Exploring the Potential of Recurrent Neural Networks for Medical Image Segmentation","authors":"Aaditya Jain, Sanjeev Kumar Mandal, Monika Abrol","doi":"10.1109/ICOCWC60930.2024.10470661","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks (RNNs) are a modern-day state-of-the-art algorithm that is brand new modern getting used for clinical picture segmentation. RNNs are, in particular, nicely applicable for this undertaking due to the fact they can be skilled to bear in mind patterns over long sequences brand new information. This enables them to perceive structural patterns in an image and carry out sophisticated segmentation obligations together with tumor or organ boundary identification. similarly, RNNs have the ability to contain earlier know-how from different pics and medical data, as well as contextual know-how from external resources such as electronic fitness information. This paper critiques the contemporary in RNNs for medical picture segmentation, outlining the key methods and programs contemporary RNNs inside the field. We discuss both the successes and demanding situations of trendy RNN-based procedures and provide destiny studies directions for the improvement of modern-day extra correct and efficient segmentation equipment.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"56 34","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent Neural Networks (RNNs) are a modern-day state-of-the-art algorithm that is brand new modern getting used for clinical picture segmentation. RNNs are, in particular, nicely applicable for this undertaking due to the fact they can be skilled to bear in mind patterns over long sequences brand new information. This enables them to perceive structural patterns in an image and carry out sophisticated segmentation obligations together with tumor or organ boundary identification. similarly, RNNs have the ability to contain earlier know-how from different pics and medical data, as well as contextual know-how from external resources such as electronic fitness information. This paper critiques the contemporary in RNNs for medical picture segmentation, outlining the key methods and programs contemporary RNNs inside the field. We discuss both the successes and demanding situations of trendy RNN-based procedures and provide destiny studies directions for the improvement of modern-day extra correct and efficient segmentation equipment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索递归神经网络在医学图像分割中的潜力
递归神经网络(RNN)是一种现代最先进的算法,被用于临床图片分割。RNN 尤其适用于这项工作,因为它们能够熟练地记住长序列全新信息的模式。这使它们能够感知图像中的结构模式,并执行复杂的分割任务,如肿瘤或器官边界识别。同样,RNN 还能包含来自不同图片和医疗数据的早期知识,以及来自外部资源(如电子健康信息)的上下文知识。本文评论了用于医学图片分割的当代 RNN,概述了该领域的关键方法和当代 RNN 程序。我们讨论了基于 RNN 的新程序的成功之处和面临的挑战,并为改进现代更正确、更高效的分割设备提供了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Exploration of Data Augmentation Techniques in Ensemble Learning for Medical Image Segmentation with Transfer Learning An Investigation of the Use of Applied Cryptography for Preventing Unauthorized Access Fuzzy Optics Enabled Antenna Model for Push-To-Talk Communication in Underwater Networks Assessing Optimal Hyper parameters of Deep Neural Networks on Cancers Datasets Performance Comparison of Routing Protocols for Mobile Wireless Mesh Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1