Light Field Synthesis from a Monocular Video Using Neural Radiance Fields

Hyungsun Baek, In Kyu Park
{"title":"Light Field Synthesis from a Monocular Video Using Neural Radiance Fields","authors":"Hyungsun Baek, In Kyu Park","doi":"10.1109/ICEIC61013.2024.10457235","DOIUrl":null,"url":null,"abstract":"Light field, known for capturing directional light rays, has garnered substantial interest owing to the growing demand for view synthesis in immersive media and recent advancements in deep learning techniques. However, existing light field synthesis methods focus on generating views with a limited baseline, which is the distance between sub-aperture images (SAIs). In this paper, we propose a novel method to compose a light field with an expanded baseline using successive frames from a monocular video. We create a synthetic light field dataset with a wide baseline derived from a video game, employing photorealistic rendering. This dataset consists of continuous light field frames and depth maps of the central sub-aperture images. The proposed network consists of two key steps, a preprocessing step that generates visible SAIs using RGBD images and a synthesis step that constructs a Neural Radiance Field with RGBD supervision.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"229 3","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Light field, known for capturing directional light rays, has garnered substantial interest owing to the growing demand for view synthesis in immersive media and recent advancements in deep learning techniques. However, existing light field synthesis methods focus on generating views with a limited baseline, which is the distance between sub-aperture images (SAIs). In this paper, we propose a novel method to compose a light field with an expanded baseline using successive frames from a monocular video. We create a synthetic light field dataset with a wide baseline derived from a video game, employing photorealistic rendering. This dataset consists of continuous light field frames and depth maps of the central sub-aperture images. The proposed network consists of two key steps, a preprocessing step that generates visible SAIs using RGBD images and a synthesis step that constructs a Neural Radiance Field with RGBD supervision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经辐射场从单目视频中合成光场
光场以捕捉定向光线而闻名,由于身临其境媒体对视图合成的需求日益增长,以及深度学习技术的最新进展,光场合成技术受到了广泛关注。然而,现有的光场合成方法侧重于生成基线有限的视图,即子孔图像(SAI)之间的距离。在本文中,我们提出了一种新方法,利用单目视频中的连续帧来合成具有扩展基线的光场。我们创建了一个具有宽基线的合成光场数据集,该数据集来自一款视频游戏,并采用了逼真渲染技术。该数据集由连续光场帧和中央子孔径图像的深度图组成。拟议的网络由两个关键步骤组成,一个是利用 RGBD 图像生成可见 SAI 的预处理步骤,另一个是利用 RGBD 监督构建神经辐射场的合成步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improving the Durability of Shaded Pole Induction Motors Used for Refrigerator Fans New Approximate 4:2 Compressor for High Accuracy and Small Area Using MUX Logic A Study on the UWB/Encoder/IMU Sensor Fusion Position Estimation System for the Development of Driving Assistance Technology in Autonomous Driving Wheelchairs DDANet: Dilated Deformable Attention Network for Dynamic Scene Deblurring NIR to LWIR Image Translation for Generating LWIR Image Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1