Hardware and Software Co-Simulation Methodology for Processing-in-Memory Bitcell application

Jae-Gun Lee, Shin-Uk Kang, Min-Seong Choo
{"title":"Hardware and Software Co-Simulation Methodology for Processing-in-Memory Bitcell application","authors":"Jae-Gun Lee, Shin-Uk Kang, Min-Seong Choo","doi":"10.1109/ICEIC61013.2024.10457160","DOIUrl":null,"url":null,"abstract":"This paper proposes a reliable design methodology for processing-in-memory (PIM) Macro design. Instead of focusing on neural network training and inferencing in full precision, whether deep neural network (DNN) or convolutional neural network (CNN), we present an efficient and accurate performance evaluation methodology through simulation that considers the characteristics of actual bitcells in use. Additionally, we suggest necessary hardware design constraints to achieve high accuracy.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"172 3","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a reliable design methodology for processing-in-memory (PIM) Macro design. Instead of focusing on neural network training and inferencing in full precision, whether deep neural network (DNN) or convolutional neural network (CNN), we present an efficient and accurate performance evaluation methodology through simulation that considers the characteristics of actual bitcells in use. Additionally, we suggest necessary hardware design constraints to achieve high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内存处理比特杯应用的软硬件协同仿真方法
本文为内存处理(PIM)宏设计提出了一种可靠的设计方法。无论是深度神经网络 (DNN),还是卷积神经网络 (CNN),我们都没有把重点放在完全精确的神经网络训练和推理上,而是通过仿真提出了一种高效、精确的性能评估方法,该方法考虑到了实际使用的比特单元的特性。此外,我们还提出了实现高精度所需的硬件设计限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Improving the Durability of Shaded Pole Induction Motors Used for Refrigerator Fans New Approximate 4:2 Compressor for High Accuracy and Small Area Using MUX Logic A Study on the UWB/Encoder/IMU Sensor Fusion Position Estimation System for the Development of Driving Assistance Technology in Autonomous Driving Wheelchairs DDANet: Dilated Deformable Attention Network for Dynamic Scene Deblurring NIR to LWIR Image Translation for Generating LWIR Image Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1