Tae Eun Jang, Kyu Hyun Lee, Gi Yeol Kim, Su Yeon Yun, Da-Hyeon Youn, Hyunggu Choi, Jihyang Kim, Soo Youn Kim, Minkyu Song
{"title":"Compute-in-Memory with SAR ADC and 2T1C DRAM for MAC Operations","authors":"Tae Eun Jang, Kyu Hyun Lee, Gi Yeol Kim, Su Yeon Yun, Da-Hyeon Youn, Hyunggu Choi, Jihyang Kim, Soo Youn Kim, Minkyu Song","doi":"10.1109/ICEIC61013.2024.10457128","DOIUrl":null,"url":null,"abstract":"This paper presents a compute-in-memory (CIM) architecture for MAC operation using 2T1 C dynamic random access memory (DRAM) and a successive-approximation analog-to-digital converter (SAR ADC). The proposed design features CIM analog multiplication and summation architecture consisting of a digital-to-time converter (DTC) and SAR ADC. The DTC converts the input code into clock-based pulse width, and the calculation can be done by passing through pulse into a 2T1C DRAM array in parallel. The proposed structure is implemented using a 28-nm CMOS process, operates four parallel $2-bit\\times 4-bit$ multiplication and total summation simultaneously, and a single calculation requires 140ns for 100MHz system clock frequency.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"102 7-8","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a compute-in-memory (CIM) architecture for MAC operation using 2T1 C dynamic random access memory (DRAM) and a successive-approximation analog-to-digital converter (SAR ADC). The proposed design features CIM analog multiplication and summation architecture consisting of a digital-to-time converter (DTC) and SAR ADC. The DTC converts the input code into clock-based pulse width, and the calculation can be done by passing through pulse into a 2T1C DRAM array in parallel. The proposed structure is implemented using a 28-nm CMOS process, operates four parallel $2-bit\times 4-bit$ multiplication and total summation simultaneously, and a single calculation requires 140ns for 100MHz system clock frequency.