Funda AK AZEM, Işıl Bi̇rli̇k, Tülay KOÇ DELİCE, Ramazan Dalmiş
{"title":"Elektrokimyasal Olarak Çöktürülmüş Metal Oksit Takviyelendirilmiş Ni Nanokompozit Kaplamaların Korozyon Performansı","authors":"Funda AK AZEM, Işıl Bi̇rli̇k, Tülay KOÇ DELİCE, Ramazan Dalmiş","doi":"10.21205/deufmd.2024267604","DOIUrl":null,"url":null,"abstract":"The properties of traditional nickel coatings were enhanced by preparing Ni nanocomposite coatings reinforced with metal oxide nanoparticles by using electrodeposition technique. The impact of applied current density was investigated by changing SiO2 nanoparticle concentration. Phase structure study and morphological investigation of the samples were performed by X-Ray Diffractometer and Scanning Electron Microscopy, respectively. Vickers indentation method was utilized to determine the mechanical properties of obtained nanocomposite coatings. Potentiodynamic polarization technique was performed to evaluate electrochemical behavior of nanocomposite coatings. As a result, introducing SiO 2 nanoparticles to Ni matrix improves both mechanical and electrochemical properties of produced nanocomposite coatings.","PeriodicalId":519023,"journal":{"name":"Deu Muhendislik Fakultesi Fen ve Muhendislik","volume":"30 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deu Muhendislik Fakultesi Fen ve Muhendislik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2024267604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The properties of traditional nickel coatings were enhanced by preparing Ni nanocomposite coatings reinforced with metal oxide nanoparticles by using electrodeposition technique. The impact of applied current density was investigated by changing SiO2 nanoparticle concentration. Phase structure study and morphological investigation of the samples were performed by X-Ray Diffractometer and Scanning Electron Microscopy, respectively. Vickers indentation method was utilized to determine the mechanical properties of obtained nanocomposite coatings. Potentiodynamic polarization technique was performed to evaluate electrochemical behavior of nanocomposite coatings. As a result, introducing SiO 2 nanoparticles to Ni matrix improves both mechanical and electrochemical properties of produced nanocomposite coatings.