Towards Efficient Visual Attention Prediction for 360 Degree Videos

Herman Prawiro, Tse-Yu Pan, Chun-Kai Yang, Chih-Tsun Huang, Min-Chun Hu
{"title":"Towards Efficient Visual Attention Prediction for 360 Degree Videos","authors":"Herman Prawiro, Tse-Yu Pan, Chun-Kai Yang, Chih-Tsun Huang, Min-Chun Hu","doi":"10.1109/AIxVR59861.2024.00014","DOIUrl":null,"url":null,"abstract":"Visual attention prediction refers to the ability to predict the most visually important or attention-grabbing areas in a scene, and emphasize them to create an engaging and realistic experience for the user. These technologies require real-time processing of high-quality visual content to maintain user engagement and immersion. As such, it is necessary to use lightweight models that can predict the most important regions of a scene without incurring large computational cost. The contribution of this work is the development and evaluation of a lightweight model for visual attention prediction, which serves as a baseline on public datasets. We study various model design choices and their effects on the performance and efficiency. We also study the effect of a model compression technique, namely self-distillation.","PeriodicalId":518749,"journal":{"name":"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)","volume":"135 1","pages":"50-59"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIxVR59861.2024.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual attention prediction refers to the ability to predict the most visually important or attention-grabbing areas in a scene, and emphasize them to create an engaging and realistic experience for the user. These technologies require real-time processing of high-quality visual content to maintain user engagement and immersion. As such, it is necessary to use lightweight models that can predict the most important regions of a scene without incurring large computational cost. The contribution of this work is the development and evaluation of a lightweight model for visual attention prediction, which serves as a baseline on public datasets. We study various model design choices and their effects on the performance and efficiency. We also study the effect of a model compression technique, namely self-distillation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现 360 度视频的高效视觉注意力预测
视觉注意力预测是指预测场景中视觉上最重要或最吸引注意力的区域,并强调这些区域,从而为用户创造引人入胜的逼真体验的能力。这些技术需要实时处理高质量的视觉内容,以保持用户的参与度和沉浸感。因此,有必要使用轻量级模型,既能预测场景中最重要的区域,又不会产生大量计算成本。这项工作的贡献在于开发和评估了一个用于视觉注意力预测的轻量级模型,并将其作为公共数据集的基线。我们研究了各种模型设计选择及其对性能和效率的影响。我们还研究了一种模型压缩技术(即自蒸馏)的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimedia Retrieval in Mixed Reality: Leveraging Live Queries for Immersive Experiences TransUser's: A Transformer Based Salient Object Detection for Users Experience Generation in 360° Videos Optimizing Robotic Automatic Suturing Through VR-Enhanced Data Generation for Reinforcement Learning Algorithms Interactive Digital Twins for Online Planning and Worker Safety in Intralogistics and Production Equipment Assembly Recognition for Augmented Reality Guidance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1