Ei Tanaka, Y. Kawamoto, Nei Kato, Masashi Iwabuchi, Riku Ohmiya, T. Murakami
{"title":"Frequency Resource Allocation for IRS-Aided Communication Using Beam Squint Approach","authors":"Ei Tanaka, Y. Kawamoto, Nei Kato, Masashi Iwabuchi, Riku Ohmiya, T. Murakami","doi":"10.1109/CCNC51664.2024.10454876","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) is a device that can reflect radio waves in any direction by setting the phase shift of the reflecting elements. It is expected to solve the problems of high-frequency band communications, such as vulnerability to obstacles, and to realize super-multiplex connections in the high-frequency band. Since the reflective elements of IRS can only be time-division controlled and can basically support only one user per time slot, it is highly likely that a large number of resource blocks will be allocated to a single user to perform communications. However, in such a case, the frequency efficiency is reduced due to the effect of beam squint. In this paper, we show the effectiveness of a method to increase frequency efficiency by optimizing the reflection direction through resource allocation and IRS phase control.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"63 8","pages":"1064-1065"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent reflecting surface (IRS) is a device that can reflect radio waves in any direction by setting the phase shift of the reflecting elements. It is expected to solve the problems of high-frequency band communications, such as vulnerability to obstacles, and to realize super-multiplex connections in the high-frequency band. Since the reflective elements of IRS can only be time-division controlled and can basically support only one user per time slot, it is highly likely that a large number of resource blocks will be allocated to a single user to perform communications. However, in such a case, the frequency efficiency is reduced due to the effect of beam squint. In this paper, we show the effectiveness of a method to increase frequency efficiency by optimizing the reflection direction through resource allocation and IRS phase control.