{"title":"NoSimple: Data Bias Evaluation Metrics","authors":"S. Rahardja, P. Fränti","doi":"10.1109/IMCOM60618.2024.10418419","DOIUrl":null,"url":null,"abstract":"Simple objects are defined as objects invariably correctly classified by all outlier detectors. Its presence impairs performance of binary classifiers such as ROC or F1 score. A large number of simple objects falsely improve performance of binary classifiers when evaluated by ROC or F1 score. This impairs reliability of classifier evaluation. This manuscript proposes evaluation without simple objects (NoSimple). NoSimple preprocesses data to factor in simple objects by removing the simple objects for the evaluation phase. Experiments with 30 realworld datasets demonstrate that NoSimple significantly reduced the average ROC of all classifiers by $0.04 \\sim 0.06$. NoSimple is most effective when the percentage of simple objects exceeds $30{\\% }$. By introducing a new method to reliably evaluate outlier classifiers, NoSimple has the potential to revolutionize evaluation metrics and has a multitude of applications in data science research.","PeriodicalId":518057,"journal":{"name":"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"284 5","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM60618.2024.10418419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simple objects are defined as objects invariably correctly classified by all outlier detectors. Its presence impairs performance of binary classifiers such as ROC or F1 score. A large number of simple objects falsely improve performance of binary classifiers when evaluated by ROC or F1 score. This impairs reliability of classifier evaluation. This manuscript proposes evaluation without simple objects (NoSimple). NoSimple preprocesses data to factor in simple objects by removing the simple objects for the evaluation phase. Experiments with 30 realworld datasets demonstrate that NoSimple significantly reduced the average ROC of all classifiers by $0.04 \sim 0.06$. NoSimple is most effective when the percentage of simple objects exceeds $30{\% }$. By introducing a new method to reliably evaluate outlier classifiers, NoSimple has the potential to revolutionize evaluation metrics and has a multitude of applications in data science research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NoSimple:数据偏差评估指标
简单对象是指所有离群点检测器都能正确分类的对象。它的存在会影响二元分类器的性能,如 ROC 或 F1 分数。在使用 ROC 或 F1 分数进行评估时,大量简单对象会错误地提高二元分类器的性能。这会损害分类器评估的可靠性。本手稿提出了不使用简单对象的评估方法(NoSimple)。NoSimple 对数据进行预处理,在评估阶段移除简单对象,以考虑简单对象的因素。使用 30 个真实世界数据集进行的实验表明,NoSimple 使所有分类器的平均 ROC 显著降低了 0.04 美元(或 0.06 美元)。当简单对象的比例超过 $30{\% }$ 时,NoSimple 的效果最佳。通过引入一种新方法来可靠地评估离群分类器,NoSimple 有可能彻底改变评估指标,并在数据科学研究中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content Analysis Of Social Media Platform Instagram Binus Tv (Period September 2022 - December 2022) Efficient Thermal Management Strategies for 3D-SiP Architectures A Time-Sensitive Networking Traffic Scheduling Method Based on Q-Learning Routing Optimization Title Copyright Page The Design of Independent-Uniform Knowledge Sources of Blackboard Architecture in Timber Harvesting Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1