Sparse online regression algorithm with insensitive loss functions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-03 DOI:10.1016/j.jmva.2024.105316
Ting Hu , Jing Xiong
{"title":"Sparse online regression algorithm with insensitive loss functions","authors":"Ting Hu ,&nbsp;Jing Xiong","doi":"10.1016/j.jmva.2024.105316","DOIUrl":null,"url":null,"abstract":"<div><p>Online learning is an efficient approach in machine learning and statistics, which iteratively updates models upon the observation of a sequence of training examples. A representative online learning algorithm is the online gradient descent, which has found wide applications due to its low complexity and scalability to large datasets. Kernel-based learning methods have been proven to be quite successful in dealing with nonlinearity in the data and multivariate optimization. In this paper we present a class of kernel-based online gradient descent algorithm for addressing regression problems, which generates sparse estimators in an iterative way to reduce the algorithmic complexity for training streaming datasets and model selection in large-scale learning scenarios. In the setting of support vector regression (SVR), we design the sparse online learning algorithm by introducing a sequence of insensitive distance-based loss functions. We prove consistency and error bounds quantifying the generalization performance of such algorithms under mild conditions. The theoretical results demonstrate the interplay between statistical accuracy and sparsity property during learning processes. We show that the insensitive parameter plays a crucial role in providing sparsity as well as fast convergence rates. The numerical experiments also support our theoretical results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400023X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Online learning is an efficient approach in machine learning and statistics, which iteratively updates models upon the observation of a sequence of training examples. A representative online learning algorithm is the online gradient descent, which has found wide applications due to its low complexity and scalability to large datasets. Kernel-based learning methods have been proven to be quite successful in dealing with nonlinearity in the data and multivariate optimization. In this paper we present a class of kernel-based online gradient descent algorithm for addressing regression problems, which generates sparse estimators in an iterative way to reduce the algorithmic complexity for training streaming datasets and model selection in large-scale learning scenarios. In the setting of support vector regression (SVR), we design the sparse online learning algorithm by introducing a sequence of insensitive distance-based loss functions. We prove consistency and error bounds quantifying the generalization performance of such algorithms under mild conditions. The theoretical results demonstrate the interplay between statistical accuracy and sparsity property during learning processes. We show that the insensitive parameter plays a crucial role in providing sparsity as well as fast convergence rates. The numerical experiments also support our theoretical results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
损失函数不敏感的稀疏在线回归算法
在线学习是机器学习和统计学中的一种高效方法,它在观察到一系列训练实例后迭代更新模型。在线梯度下降算法是一种具有代表性的在线学习算法,由于其复杂度低且可扩展至大型数据集,因此得到了广泛的应用。事实证明,基于核的学习方法在处理数据的非线性和多元优化方面非常成功。在本文中,我们提出了一类基于核的在线梯度下降算法,用于解决回归问题,该算法以迭代方式生成稀疏估计器,以降低大规模学习场景中训练流数据集和模型选择的算法复杂度。在支持向量回归(SVR)的环境中,我们通过引入一系列不敏感的基于距离的损失函数来设计稀疏在线学习算法。我们证明了在温和条件下量化此类算法泛化性能的一致性和误差边界。理论结果证明了学习过程中统计精度和稀疏性之间的相互作用。我们表明,不敏感参数在提供稀疏性和快速收敛率方面起着至关重要的作用。数值实验也支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1