Chong Hong, Dewei Tang, Qiquan Quan, Zhuoqun Cao, Zongquan Deng
{"title":"Energy-recoverable landing strategy for small-scale jumping robots","authors":"Chong Hong, Dewei Tang, Qiquan Quan, Zhuoqun Cao, Zongquan Deng","doi":"10.1016/j.robot.2024.104696","DOIUrl":null,"url":null,"abstract":"<div><p>Small-scale jumping robots widely employ the pause-and-leap locomotion strategy. They use elastic elements to enhance the jumping performance, which is promising for locomotion over rugged terrain. However, these robots typically lose a significant amount of mechanical energy during landing, which is initially accumulated for takeoff, resulting in wasted energy. Here, we propose a landing strategy that uses a jumping mechanism with controlled mono-stable or bi-stable characteristics to achieve the energy recoverable landing. By adjusting the jumping mechanism to an appropriate bi-stable state before landing, the robot’s extended leg retracts to its pre-jump configuration upon touchdown, enabling the recapture of mechanical energy within the springs. We develop analytical models for the touchdown collision and landing dynamics. A 165 g robot prototype is constructed, featuring integrated sensing, actuation, and computations. Both simulations and experiments are conducted to explore the effects of various factors on the landing behavior. Experiments demonstrate successful landings with energy recovery ratio exceeding 50% across different landing trajectories. This landing strategy holds significant potential for enhancing the locomotion efficiency of future small-scale jumping robots.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000794","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Small-scale jumping robots widely employ the pause-and-leap locomotion strategy. They use elastic elements to enhance the jumping performance, which is promising for locomotion over rugged terrain. However, these robots typically lose a significant amount of mechanical energy during landing, which is initially accumulated for takeoff, resulting in wasted energy. Here, we propose a landing strategy that uses a jumping mechanism with controlled mono-stable or bi-stable characteristics to achieve the energy recoverable landing. By adjusting the jumping mechanism to an appropriate bi-stable state before landing, the robot’s extended leg retracts to its pre-jump configuration upon touchdown, enabling the recapture of mechanical energy within the springs. We develop analytical models for the touchdown collision and landing dynamics. A 165 g robot prototype is constructed, featuring integrated sensing, actuation, and computations. Both simulations and experiments are conducted to explore the effects of various factors on the landing behavior. Experiments demonstrate successful landings with energy recovery ratio exceeding 50% across different landing trajectories. This landing strategy holds significant potential for enhancing the locomotion efficiency of future small-scale jumping robots.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.