Satellite Image Classification using CNN with Particle Swarm Optimization Classifier

Vidhya S , Balaji M , Kamaraj V
{"title":"Satellite Image Classification using CNN with Particle Swarm Optimization Classifier","authors":"Vidhya S ,&nbsp;Balaji M ,&nbsp;Kamaraj V","doi":"10.1016/j.procs.2024.03.287","DOIUrl":null,"url":null,"abstract":"<div><p>Disaster relief, police work, and environmental monitoring all benefit from satellite images. Objects and infrastructure in the images must be manually identified for these applications. Due to the large areas that need to be searched and the limited number of accessible analysts, automation is essential. However, the accuracy and dependability of existing object recognition and classification algorithms renders them inadequate for the task. One family of machine learning algorithms called \"deep learning\" has showed immense potential for automating these kinds of jobs. Convolutional neural networks have been successful in the area of image recognition. Here, convolutional neural networks (CNNs) and a particle swarm optimization classifier is utilized to develop efficient algorithms for classifying satellite images. The results of this classifier model are better than those of existing approaches.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"233 ","pages":"Pages 979-987"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924006471/pdf?md5=698c17182cc4031390547607af162f68&pid=1-s2.0-S1877050924006471-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924006471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disaster relief, police work, and environmental monitoring all benefit from satellite images. Objects and infrastructure in the images must be manually identified for these applications. Due to the large areas that need to be searched and the limited number of accessible analysts, automation is essential. However, the accuracy and dependability of existing object recognition and classification algorithms renders them inadequate for the task. One family of machine learning algorithms called "deep learning" has showed immense potential for automating these kinds of jobs. Convolutional neural networks have been successful in the area of image recognition. Here, convolutional neural networks (CNNs) and a particle swarm optimization classifier is utilized to develop efficient algorithms for classifying satellite images. The results of this classifier model are better than those of existing approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用带有粒子群优化分类器的 CNN 进行卫星图像分类
救灾、警务工作和环境监测都受益于卫星图像。在这些应用中,必须手动识别图像中的物体和基础设施。由于需要搜索的区域很大,而可利用的分析人员数量有限,因此自动化是必不可少的。然而,现有物体识别和分类算法的准确性和可靠性使其无法胜任这项任务。被称为 "深度学习 "的机器学习算法家族在这类工作的自动化方面展现出了巨大的潜力。卷积神经网络在图像识别领域取得了成功。在这里,卷积神经网络(CNN)和粒子群优化分类器被用来开发高效的卫星图像分类算法。该分类器模型的结果优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1