NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI
{"title":"ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY","authors":"NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI","doi":"10.1142/s0218348x24500683","DOIUrl":null,"url":null,"abstract":"<p>Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.