{"title":"NOVEL UNIFIED STABILITY CRITERION FOR FRACTIONAL-ORDER TIME DELAY SYSTEMS WITH STRONG RESISTANCE TO FRACTIONAL ORDERS","authors":"ZHE ZHANG, CHENGHAO XU, YAONAN WANG, JIANQIAO LUO, XU XIAO","doi":"10.1142/s0218348x24500452","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel unified stability criterion is first proposed for general fractional-order systems with time delay when the fractional order is from 0 to 1. Such a new unified criterion has the advantage of having an initiative link with the fractional orders. A further advantage is that the corresponding asymptotic stability theorem, derived from the proposed criterion used to analyze the asymptotic stability, is only slightly affected by the change of the fractional order. In addition, the unified stability criterion is applied to general multi-dimensional nonlinear fractional-order systems with time delays, the corresponding asymptotic stability criterion is applied by combining the vector Lyapunov function with the M-matrix method. Compared with the traditional stability criterion, the unified stability criterion is slightly influenced by the changing fractional order and large time delays. The reliability and effectiveness of the novel uniform stability criterion were verified through three representative examples.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel unified stability criterion is first proposed for general fractional-order systems with time delay when the fractional order is from 0 to 1. Such a new unified criterion has the advantage of having an initiative link with the fractional orders. A further advantage is that the corresponding asymptotic stability theorem, derived from the proposed criterion used to analyze the asymptotic stability, is only slightly affected by the change of the fractional order. In addition, the unified stability criterion is applied to general multi-dimensional nonlinear fractional-order systems with time delays, the corresponding asymptotic stability criterion is applied by combining the vector Lyapunov function with the M-matrix method. Compared with the traditional stability criterion, the unified stability criterion is slightly influenced by the changing fractional order and large time delays. The reliability and effectiveness of the novel uniform stability criterion were verified through three representative examples.