Rossana Dimitri, Marco Trullo, Martina Rinaldi, Caterina Fai, Francesco Tornabene
{"title":"Analytical modeling of the mixed-mode behavior in functionally graded coating/substrate systems","authors":"Rossana Dimitri, Marco Trullo, Martina Rinaldi, Caterina Fai, Francesco Tornabene","doi":"10.1007/s00161-024-01301-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work aims at studying the interfacial behavior of functionally graded coatings (FGCs) on different substrates, here modeled as asymmetric double cantilever beams, in line with the experimental tests. An enhanced beam theory (EBT) is proposed to treat the mixed-mode phenomena in such specimens, whose interface is considered as an assembly of two components of the coating/substrate system bonded together partially by an elastic interface. This last one is modeled as a continuous distribution of elastic–brittle springs acting along the tangential and/or normal direction depending on the interfacial mixed-mode condition. Starting with the Timoshenko beam theory, we determine the differential equations of the problem directly expressed in terms of the unknown interfacial stresses, both in the normal and tangential directions. Different distribution laws are implemented to define the functional graduation of the material in the thickness direction of the specimens, whose variation is demonstrated numerically to affect both the local and global response in terms of interfacial stresses, internal actions, energy quantities and load–displacement curves. The good accuracy of the proposed method is verified against predictions by a classical single beam theory (SBT), with interesting results that could serve as reference solutions for more expensive experimental investigations on the topic.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 4","pages":"839 - 875"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01301-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims at studying the interfacial behavior of functionally graded coatings (FGCs) on different substrates, here modeled as asymmetric double cantilever beams, in line with the experimental tests. An enhanced beam theory (EBT) is proposed to treat the mixed-mode phenomena in such specimens, whose interface is considered as an assembly of two components of the coating/substrate system bonded together partially by an elastic interface. This last one is modeled as a continuous distribution of elastic–brittle springs acting along the tangential and/or normal direction depending on the interfacial mixed-mode condition. Starting with the Timoshenko beam theory, we determine the differential equations of the problem directly expressed in terms of the unknown interfacial stresses, both in the normal and tangential directions. Different distribution laws are implemented to define the functional graduation of the material in the thickness direction of the specimens, whose variation is demonstrated numerically to affect both the local and global response in terms of interfacial stresses, internal actions, energy quantities and load–displacement curves. The good accuracy of the proposed method is verified against predictions by a classical single beam theory (SBT), with interesting results that could serve as reference solutions for more expensive experimental investigations on the topic.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.