{"title":"Fully automated verification of linear time-invariant systems against signal temporal logic specifications via reachability analysis","authors":"Niklas Kochdumper, Stanley Bak","doi":"10.1016/j.nahs.2024.101491","DOIUrl":null,"url":null,"abstract":"<div><p>While reachability analysis is one of the most promising approaches for formal verification of dynamic systems, a major disadvantage preventing a more widespread application is the requirement to manually tune algorithm parameters such as the time step size. Manual tuning is especially problematic if one aims to verify that the system satisfies complicated specifications described by signal temporal logic formulas since the effect the tightness of the reachable set has on the satisfaction of the specification is often non-trivial to see for humans. We address this problem with a fully-automated verifier for linear systems, which automatically refines all parameters for reachability analysis until it can either prove or disprove that the system satisfies a signal temporal logic formula for all initial states and all uncertain inputs. Our verifier combines reachset temporal logic with dependency preservation to obtain a model checking approach whose over-approximation error converges to zero for adequately tuned parameters. While we in this work focus on linear systems for simplicity, the general concept we present can equivalently be applied for nonlinear and hybrid systems.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101491"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000281","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
While reachability analysis is one of the most promising approaches for formal verification of dynamic systems, a major disadvantage preventing a more widespread application is the requirement to manually tune algorithm parameters such as the time step size. Manual tuning is especially problematic if one aims to verify that the system satisfies complicated specifications described by signal temporal logic formulas since the effect the tightness of the reachable set has on the satisfaction of the specification is often non-trivial to see for humans. We address this problem with a fully-automated verifier for linear systems, which automatically refines all parameters for reachability analysis until it can either prove or disprove that the system satisfies a signal temporal logic formula for all initial states and all uncertain inputs. Our verifier combines reachset temporal logic with dependency preservation to obtain a model checking approach whose over-approximation error converges to zero for adequately tuned parameters. While we in this work focus on linear systems for simplicity, the general concept we present can equivalently be applied for nonlinear and hybrid systems.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.