Error bounds for kernel-based approximations of the Koopman operator

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Applied and Computational Harmonic Analysis Pub Date : 2024-04-04 DOI:10.1016/j.acha.2024.101657
Friedrich M. Philipp , Manuel Schaller , Karl Worthmann , Sebastian Peitz , Feliks Nüske
{"title":"Error bounds for kernel-based approximations of the Koopman operator","authors":"Friedrich M. Philipp ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Sebastian Peitz ,&nbsp;Feliks Nüske","doi":"10.1016/j.acha.2024.101657","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101657"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000344/pdfft?md5=f01b4b57c82f431fd15e3f589cf72791&pid=1-s2.0-S1063520324000344-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000344","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核的库普曼算子近似的误差范围
我们考虑的是重现核希尔伯特空间(RKHS)上随机微分方程库普曼算子的数据驱动近似。我们的重点是如果数据是从长期遍历模拟中收集的,那么估计误差就会很大。我们推导出了以希尔伯特-施密特规范衡量的核交叉协方差算子方差的精确表达式,以及有限数据估计误差的概率边界。此外,我们还利用有限梅塞尔数列展开推导出了 RKHS 中观测值预测误差的约束。此外,假设 RKHS 具有库普曼不变性,我们还提供了全近似误差的约束。使用 Ornstein-Uhlenbeck 过程进行的数值实验说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
期刊最新文献
On quadrature for singular integral operators with complex symmetric quadratic forms Gaussian approximation for the moving averaged modulus wavelet transform and its variants Naimark-spatial families of equichordal tight fusion frames Generalization error guaranteed auto-encoder-based nonlinear model reduction for operator learning Unlimited sampling beyond modulo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1