Serrated plastic flow in deforming complex concentrated alloys: universal signatures of dislocation avalanches

Kamran Karimi, Amin Esfandiarpour, Stefanos Papanikolaou
{"title":"Serrated plastic flow in deforming complex concentrated alloys: universal signatures of dislocation avalanches","authors":"Kamran Karimi,&nbsp;Amin Esfandiarpour,&nbsp;Stefanos Papanikolaou","doi":"10.1186/s41313-024-00059-5","DOIUrl":null,"url":null,"abstract":"<div><p>Under plastic flow, multi-element high/medium-entropy alloys (HEAs/MEAs) commonly exhibit complex intermittent and collective dislocation dynamics owing to inherent lattice distortion and atomic-level chemical complexities. Using atomistic simulations, we report on an avalanche study of model face-centered cubic (fcc) NiCoCrFeMn and NiCoCr chemically complex alloys aiming for microstructural/topological characterization of associated dislocation avalanches. The results of our avalanche simulations reveal a close correspondence between the observed serration features in the stress response of the deforming HEA/MEA and the incurred slip patterns within the bulk crystal. We show that such correlations become quite pronounced within the rate-independent (quasi-static) regime exhibiting scale-free statistics and critical scaling features as universal signatures of dislocation avalanches.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-024-00059-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-024-00059-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under plastic flow, multi-element high/medium-entropy alloys (HEAs/MEAs) commonly exhibit complex intermittent and collective dislocation dynamics owing to inherent lattice distortion and atomic-level chemical complexities. Using atomistic simulations, we report on an avalanche study of model face-centered cubic (fcc) NiCoCrFeMn and NiCoCr chemically complex alloys aiming for microstructural/topological characterization of associated dislocation avalanches. The results of our avalanche simulations reveal a close correspondence between the observed serration features in the stress response of the deforming HEA/MEA and the incurred slip patterns within the bulk crystal. We show that such correlations become quite pronounced within the rate-independent (quasi-static) regime exhibiting scale-free statistics and critical scaling features as universal signatures of dislocation avalanches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂浓缩合金变形过程中的锯齿状塑性流动:位错雪崩的普遍特征
在塑性流动条件下,多元素高/中熵合金(HEAs/MEAs)由于固有的晶格畸变和原子级化学复杂性,通常会表现出复杂的间歇和集合位错动力学。通过原子模拟,我们报告了对模型面心立方(ccc)镍钴铬铁锰合金和镍钴铬化学复合合金的雪崩研究,旨在对相关位错雪崩进行微观结构/拓扑表征。我们的雪崩模拟结果表明,在变形 HEA/MEA 的应力响应中观察到的锯齿状特征与块状晶体内发生的滑移模式之间存在密切的对应关系。我们表明,在与速率无关的(准静态)状态下,这种相关性变得相当明显,表现出无标度统计和临界标度特征,成为位错雪崩的普遍特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
期刊最新文献
An informatics method for inferring the hardening exponent of plasticity in polycrystalline metals from surface strain measurements Multiscale modelling of precipitation hardening: a review Junction formation rates, residence times, and the rate of plastic flow in FCC metals A model for physical dislocation transmission through grain boundaries and its implementation in a discrete dislocation dynamics tool Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1