Covalent docking-driven virtual screening of extensive small-molecule libraries against Bruton tyrosine kinase for the identification of highly selective and potent novel therapeutic candidates

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-04-04 DOI:10.1016/j.jmgm.2024.108762
Ezgi Sambur , Lalehan Oktay , Serdar Durdağı
{"title":"Covalent docking-driven virtual screening of extensive small-molecule libraries against Bruton tyrosine kinase for the identification of highly selective and potent novel therapeutic candidates","authors":"Ezgi Sambur ,&nbsp;Lalehan Oktay ,&nbsp;Serdar Durdağı","doi":"10.1016/j.jmgm.2024.108762","DOIUrl":null,"url":null,"abstract":"<div><p>Bruton tyrosine kinases (BTKs) play critical roles in various diseases, including chronic lymphatic leukemia (CLL), Waldenström Macroglobulinemia, Marginal Zone Lymphoma, Mantle Cell Lymphoma (MCL), and Graft Versus Host diseases. BTKs are a family of tyrosine kinases involved in B lymphocyte signal transduction, development, and maturation. Their overexpression can lead to cancer as they are essential for the activation of the B Cell Receptor (BCR) signaling pathway. Blocking the activation of BTKs presents a promising approach for treating CLL. This study was centered around the identification of small-molecule therapeutics that have an impact on human BTK. The covalently bound Ibrutinib molecule, recognized for its ability to inhibit BTK, was used as the query molecule. IUPAC text files containing molecular fragments of Ibrutinib were employed to virtually screen five different libraries comprising small-molecules, resulting in the screening of over 2.4 million synthesized compounds. Covalent docking simulations were applied to the selected small-molecules obtained through text mining from databases. Potent hit molecules capable of inhibiting BTKs through virtual screening algorithms were identified, paving the way for novel therapeutic strategies in the treatment of CLL.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324000627","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Bruton tyrosine kinases (BTKs) play critical roles in various diseases, including chronic lymphatic leukemia (CLL), Waldenström Macroglobulinemia, Marginal Zone Lymphoma, Mantle Cell Lymphoma (MCL), and Graft Versus Host diseases. BTKs are a family of tyrosine kinases involved in B lymphocyte signal transduction, development, and maturation. Their overexpression can lead to cancer as they are essential for the activation of the B Cell Receptor (BCR) signaling pathway. Blocking the activation of BTKs presents a promising approach for treating CLL. This study was centered around the identification of small-molecule therapeutics that have an impact on human BTK. The covalently bound Ibrutinib molecule, recognized for its ability to inhibit BTK, was used as the query molecule. IUPAC text files containing molecular fragments of Ibrutinib were employed to virtually screen five different libraries comprising small-molecules, resulting in the screening of over 2.4 million synthesized compounds. Covalent docking simulations were applied to the selected small-molecules obtained through text mining from databases. Potent hit molecules capable of inhibiting BTKs through virtual screening algorithms were identified, paving the way for novel therapeutic strategies in the treatment of CLL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对布鲁顿酪氨酸激酶的大量小分子库的共价对接驱动虚拟筛选,以确定高选择性和强效的新型候选疗法
布鲁顿酪氨酸激酶(BTKs)在慢性淋巴白血病(CLL)、瓦尔登斯特伦巨球蛋白血症、边缘区淋巴瘤、套细胞淋巴瘤(MCL)和移植物抗宿主疾病等多种疾病中发挥着关键作用。BTKs 是参与 B 淋巴细胞信号转导、发育和成熟的酪氨酸激酶家族。它们的过度表达可导致癌症,因为它们对激活 B 细胞受体(BCR)信号通路至关重要。阻断 BTKs 的活化是治疗 CLL 的一种很有前景的方法。这项研究的核心是确定对人类 BTK 有影响的小分子疗法。共价结合的伊布替尼分子因其抑制 BTK 的能力而得到认可,被用作查询分子。利用包含伊布替尼分子片段的 IUPAC 文本文件虚拟筛选了五个不同的小分子化合物库,共筛选出 240 多万个合成化合物。共价对接模拟应用于通过数据库文本挖掘获得的选定小分子。通过虚拟筛选算法确定了能够抑制 BTK 的强效分子,为治疗 CLL 的新型治疗策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Editorial Board Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations How a mixture of microRNA-29a (miR-29a) and microRNA-144 (miR-144) cancer biomarkers interacts with a graphene quantum dot Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach Insights into the binding recognition and computational design of IL-2 muteins with enhanced predicted binding affinity to the IL-2 receptor α
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1