Composites with aligned and plasma-surface-modified graphene nanoplatelets and high dielectric constants

IF 2.2 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters: X Pub Date : 2024-04-10 DOI:10.1016/j.mlblux.2024.100233
Kaito Nagayama , Taku Goto , Koichi Mayumi , Rina Maeda , Tsuyohito Ito , Yoshiki Shimizu , Kohzo Ito , Yukiya Hakuta , Kazuo Terashima
{"title":"Composites with aligned and plasma-surface-modified graphene nanoplatelets and high dielectric constants","authors":"Kaito Nagayama ,&nbsp;Taku Goto ,&nbsp;Koichi Mayumi ,&nbsp;Rina Maeda ,&nbsp;Tsuyohito Ito ,&nbsp;Yoshiki Shimizu ,&nbsp;Kohzo Ito ,&nbsp;Yukiya Hakuta ,&nbsp;Kazuo Terashima","doi":"10.1016/j.mlblux.2024.100233","DOIUrl":null,"url":null,"abstract":"<div><p>We have developed a method for designing polymer and graphene nanoplatelet (GNP) composites that show high dielectric constants over a wide range of GNP contents. GNPs are dispersed in the composites through plasma-surface modification and aligned by applying an electric field (EF). This creates a large number of microcapacitor structures of GNPs separated by the polymer. The maximum dielectric constant of the sample to which the EF is applied is approximately twice that of the sample to which the EF is not applied. Furthermore, the maximum dielectric constants of the samples with plasma-surface modified GNPs are higher than those of the samples with unmodified GNPs. The composites show high dielectric constants (∼500 at 100 Hz) over a wide range of GNP contents (6 ∼ 10 wt%) while maintaining mechanical flexibility (Young’s modulus:12 ± 4 MPa).</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"22 ","pages":"Article 100233"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150824000061/pdfft?md5=93dd51695a713e811dbe3c5789fe0e13&pid=1-s2.0-S2590150824000061-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150824000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a method for designing polymer and graphene nanoplatelet (GNP) composites that show high dielectric constants over a wide range of GNP contents. GNPs are dispersed in the composites through plasma-surface modification and aligned by applying an electric field (EF). This creates a large number of microcapacitor structures of GNPs separated by the polymer. The maximum dielectric constant of the sample to which the EF is applied is approximately twice that of the sample to which the EF is not applied. Furthermore, the maximum dielectric constants of the samples with plasma-surface modified GNPs are higher than those of the samples with unmodified GNPs. The composites show high dielectric constants (∼500 at 100 Hz) over a wide range of GNP contents (6 ∼ 10 wt%) while maintaining mechanical flexibility (Young’s modulus:12 ± 4 MPa).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有对齐和等离子体表面改性石墨烯纳米片和高介电常数的复合材料
我们开发了一种设计聚合物和石墨烯纳米板(GNP)复合材料的方法,这种复合材料在很宽的 GNP 含量范围内都能显示出很高的介电常数。通过等离子体表面改性将 GNP 分散在复合材料中,并通过施加电场 (EF) 使其对齐。这样就形成了大量由聚合物分隔的 GNP 微电容结构。施加电场的样品的最大介电常数大约是未施加电场的样品的两倍。此外,经过等离子体表面修饰的 GNPs 样品的最大介电常数高于未经修饰的 GNPs 样品。在较宽的 GNP 含量范围内(6 ∼ 10 wt%),复合材料都能显示出较高的介电常数(100 Hz 时介电常数为 500),同时还能保持机械柔韧性(杨氏模量:12 ± 4 MPa)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
期刊最新文献
Slowing the crystallization speed to prepare high-efficiency flexible tin-based perovskite solar cells Large-area solution-processable black phosphorus for electronic application Composites with aligned and plasma-surface-modified graphene nanoplatelets and high dielectric constants CVD grown bi-layer MoS2 as SERS substrate: Nanomolar detection of R6G and temperature response Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1