An oxygen vacancy-rich BiO2−x/COF heterojunction for photocatalytic degradation of diclofenac†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-04-13 DOI:10.1039/D4NR00608A
Yuze Wu, Jingchao Liu, Jinxia Zhao, Chunhong Jin, Hailong Ren, Yilin Yin and Zenghe Li
{"title":"An oxygen vacancy-rich BiO2−x/COF heterojunction for photocatalytic degradation of diclofenac†","authors":"Yuze Wu, Jingchao Liu, Jinxia Zhao, Chunhong Jin, Hailong Ren, Yilin Yin and Zenghe Li","doi":"10.1039/D4NR00608A","DOIUrl":null,"url":null,"abstract":"<p >A BiO<small><sub>2−<em>x</em></sub></small>/COF composite was successfully synthesized by simple mechanical ball milling. Compared to pure BiO<small><sub>2−<em>x</em></sub></small> and COFs, the BiO<small><sub>2−<em>x</em></sub></small>/COF composite (1 : 9) showed superior photocatalytic capability. Under visible light irradiation for 90 min, the photocatalytic degradation rate of DCF reached 97%. In addition, the characterization results showed that the formation of heterojunctions and the increase in oxygen vacancy concentration were the reasons for the enhancement of the photocatalytic activity. It is confirmed by free radical capture experiments that ˙O<small><sub>2</sub></small><small><sup>−</sup></small> and h<small><sup>+</sup></small> are the main reactive substances in the photocatalytic process. The photocatalytic degradation mechanism of the composite and the photocatalytic degradation pathway of diclofenac were deduced.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 22","pages":" 10645-10655"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr00608a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A BiO2−x/COF composite was successfully synthesized by simple mechanical ball milling. Compared to pure BiO2−x and COFs, the BiO2−x/COF composite (1 : 9) showed superior photocatalytic capability. Under visible light irradiation for 90 min, the photocatalytic degradation rate of DCF reached 97%. In addition, the characterization results showed that the formation of heterojunctions and the increase in oxygen vacancy concentration were the reasons for the enhancement of the photocatalytic activity. It is confirmed by free radical capture experiments that ˙O2 and h+ are the main reactive substances in the photocatalytic process. The photocatalytic degradation mechanism of the composite and the photocatalytic degradation pathway of diclofenac were deduced.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光催化降解双氯芬酸的富氧空位 BiO2-x/COF 异质结
通过简单的机械球磨,成功合成了 BiO2-x/COF 复合材料。与纯 BiO2-x 和 COF 相比,BiO2-x/COF(9:1)具有更优异的光催化能力。在可见光照射 90 分钟后,DCF 的光催化降解率达到 97%。此外,表征结果表明,异质结的形成和氧空位浓度的增加是光催化活性增强的原因。自由基捕获实验证实,-O2- 和 h+ 是光催化过程中的主要活性物质。推导出了复合材料的光催化降解机理和双氯芬酸的光催化降解途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Synthesis and Modification of UiO-66(Ce) for Adsorptive Removal of Methylene Blue and Cu(II) Ions Ultrafast exciton–polaron dynamics in moiré superlattices A mild colloidal strategy for controlling the morphology of reduced graphene oxide–Ag nanowire hybrids Recent ultratrace per- and polyfluoroalkyl substance (PFAS) detectors Red emissive carbon dots: synergistic interplay between core and surface states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1