The Early Pathogenesis of Diabetic Retinopathy and Its Attenuation by Sodium-Glucose Transporter 2 Inhibitors

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes Pub Date : 2024-04-12 DOI:10.2337/db22-0970
Mayumi Yamato, Nao Kato, Ken-ichi Yamada, Toyoshi Inoguchi
{"title":"The Early Pathogenesis of Diabetic Retinopathy and Its Attenuation by Sodium-Glucose Transporter 2 Inhibitors","authors":"Mayumi Yamato, Nao Kato, Ken-ichi Yamada, Toyoshi Inoguchi","doi":"10.2337/db22-0970","DOIUrl":null,"url":null,"abstract":"The early pathogenetic mechanism of diabetic retinopathy (DR) and its treatment remain unclear. Therefore, we investigated the early pathogenic alterations in DR using streptozotocin-induced diabetic mice and the protective effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors against these alterations. Retinal vascular leakage was assessed by dextran fluorescence angiography. Retinal thickness and vascular leakage were increased 2 and 4 weeks after onset of diabetes, respectively. Immunostaining showed that morphological change of microglia (amoeboid form) was observed at 2 weeks. Subsequently, increased angiopoietin-2 expression, simultaneous loss of pericytes and endothelial cells, decreased vessel density, retinal hypoxia, and increased vascular endothelial growth factor (VEGF)-A/VEGF receptor system occurred at 4 weeks. SGLT2 inhibitors (luseogliflozin and ipragliflozin) had a significant protective effect on retinal vascular leakage and retinal thickness at a low dose that did not show glucose-lowering effects. Furthermore, both inhibitors at this dose attenuated microglia morphological changes and these early pathogenic alterations in DR. In vitro study, both inhibitors attenuated the lipopolysaccharide-induced activation of primary microglia, along with morphological changes toward an inactive form, suggesting the direct inhibitory effect of SGLT2 inhibitors on microglia. In summary, SGLT2i may directly prevent early pathogenic mechanisms, thereby potentially playing a role in preventing DR.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db22-0970","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The early pathogenetic mechanism of diabetic retinopathy (DR) and its treatment remain unclear. Therefore, we investigated the early pathogenic alterations in DR using streptozotocin-induced diabetic mice and the protective effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors against these alterations. Retinal vascular leakage was assessed by dextran fluorescence angiography. Retinal thickness and vascular leakage were increased 2 and 4 weeks after onset of diabetes, respectively. Immunostaining showed that morphological change of microglia (amoeboid form) was observed at 2 weeks. Subsequently, increased angiopoietin-2 expression, simultaneous loss of pericytes and endothelial cells, decreased vessel density, retinal hypoxia, and increased vascular endothelial growth factor (VEGF)-A/VEGF receptor system occurred at 4 weeks. SGLT2 inhibitors (luseogliflozin and ipragliflozin) had a significant protective effect on retinal vascular leakage and retinal thickness at a low dose that did not show glucose-lowering effects. Furthermore, both inhibitors at this dose attenuated microglia morphological changes and these early pathogenic alterations in DR. In vitro study, both inhibitors attenuated the lipopolysaccharide-induced activation of primary microglia, along with morphological changes toward an inactive form, suggesting the direct inhibitory effect of SGLT2 inhibitors on microglia. In summary, SGLT2i may directly prevent early pathogenic mechanisms, thereby potentially playing a role in preventing DR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病视网膜病变的早期发病机制及其钠-葡萄糖转运体 2 抑制剂的抑制作用
糖尿病视网膜病变(DR)的早期致病机制及其治疗方法仍不清楚。因此,我们利用链脲佐菌素诱导的糖尿病小鼠研究了DR的早期致病性改变,以及钠-葡萄糖共转运体2(SGLT2)抑制剂对这些改变的保护作用。通过葡聚糖荧光血管造影术评估视网膜血管渗漏。糖尿病发生后2周和4周,视网膜厚度和血管渗漏分别增加。免疫染色显示,2周时观察到小胶质细胞的形态变化(变形体)。随后,血管生成素-2表达增加,周细胞和内皮细胞同时丢失,血管密度降低,视网膜缺氧,血管内皮生长因子(VEGF)-A/VEGF受体系统增加。SGLT2抑制剂(luseogliflozin和ipragliflozin)在低剂量时对视网膜血管渗漏和视网膜厚度有显著的保护作用,但没有降糖效果。此外,该剂量下的两种抑制剂都能减轻小胶质细胞形态学变化和DR的这些早期致病性改变。在体外研究中,这两种抑制剂都减轻了脂多糖诱导的原发性小胶质细胞的活化,以及向非活性形态的形态学变化,这表明 SGLT2 抑制剂对小胶质细胞有直接抑制作用。总之,SGLT2i 可直接阻止早期致病机制,从而有可能在预防 DR 方面发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
期刊最新文献
N 6-Methyladenosine demethylase FTO controls macrophage homeostasis in diabetic vasculopathy Emerging concepts and success stories in type 1 diabetes research: a roadmap for a bright future Induction of a Müller glial-specific protective pathway safeguards the retina from diabetes induced damage Long-term nerve regeneration in diabetic keratopathy mediated by a novel NGF delivery system Effect of Hyperketonemia on Myocardial Function in Patients with Heart Failure and Type 2 Diabetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1