Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria

Zhuoru Jin , Wei Pang , Yan Zhao , Hui Min , Shijie Yao , Zhifang Bian , Yixin Wen , Chuanyang Peng , Yaming Cao , Li Zheng
{"title":"Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria","authors":"Zhuoru Jin ,&nbsp;Wei Pang ,&nbsp;Yan Zhao ,&nbsp;Hui Min ,&nbsp;Shijie Yao ,&nbsp;Zhifang Bian ,&nbsp;Yixin Wen ,&nbsp;Chuanyang Peng ,&nbsp;Yaming Cao ,&nbsp;Li Zheng","doi":"10.1016/j.ijpddr.2024.100539","DOIUrl":null,"url":null,"abstract":"<div><p>Infection with <em>Plasmodium falciparum</em> is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, <em>Plasmodium berghei</em> ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"25 ","pages":"Article 100539"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000204/pdfft?md5=01acea5ceacbc6298fc27269173191f8&pid=1-s2.0-S2211320724000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000204","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
口服 IPI549 可保护小鼠在实验性脑疟疾期间免受神经病变和压倒性炎症反应的影响
恶性疟原虫感染导致的脑疟疾往往是致命的,它与神经病理学有关,被描述为压倒性的炎症反应和脑微血管的机械性阻塞。PI3Kγ 是细胞内信号转导的重要组成部分,在调节细胞趋化、迁移和活化方面发挥着核心作用。本研究的目的是探讨抑制 PI3Kγ 通路与感染小鼠疟原虫伯格希氏疟原虫 ANKA 的 C57BL/6J 小鼠实验性脑疟疾(ECM)结果之间的关系。我们观察到,感染后口服 PI3Kγ 抑制剂 IPI549 能完全保护小鼠免受 ECM 的伤害。IPI549 治疗明显抑制了炎症反应的程度,减少了促炎因子的产生,降低了 T 细胞的活化,改变了抗原递呈细胞的分化。IPI549 治疗可保护受感染的小鼠免受神经病理学的影响,脑内致病性 T 细胞的减少就是证明。在寄生虫接种三天后用 IPI549 治疗受感染的小鼠,可改善小鼠血脑屏障 (BBB) 的完整性,帮助小鼠度过 ECM 的发病期。这些数据共同表明,口服 PI3Kγ 抑制剂 IPI549 对宿主炎症具有抑制作用,并能缓解脑部病理变化,这支持 IPI549 成为一种新的疟疾治疗选择,对脑疟疾具有潜在的治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.50%
发文量
31
审稿时长
48 days
期刊介绍: The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.
期刊最新文献
Antileishmanial and synergic effects of Rhanterium epapposum essential oil and its main compounds alone and combined with glucantime against Leishmania major infection. Deep-amplicon sequencing of the complete beta-tubulin gene in Trichuris trichiura before and after albendazole treatment Rapid detection of mutations in the suspected piperaquine resistance gene E415G-exo in Plasmodium falciparum exonuclease via AS‒PCR and RAA with CRISPR/Cas12a Profile of molecular markers of Sulfadoxine-Pyrimethamine-resistant Plasmodium falciparum in individuals living in southern area of Brazzaville, Republic of Congo Yeast-based assay to identify inhibitors of the malaria parasite sodium phosphate uptake transporter as potential novel antimalarial drugs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1