{"title":"Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean: Impact of the bottom-boundary condition","authors":"Pierre-Antoine Dumont , Francis Auclair , Franck Dumas , Yann Stéphan , Laurent Debreu","doi":"10.1016/j.ocemod.2024.102371","DOIUrl":null,"url":null,"abstract":"<div><p>Auclair et al. (2021) analyzed the propagation of acoustic-gravity waves (AGWaves) in the ocean and showed that AGWaves dispersion can be described based on the inner and boundary dispersion relations. A major limitation to their two-dispersion-relation model is the assumption of a rigid bottom boundary since acoustic waves can cross the ocean bottom and propagate in the sediment. An extension of their AGWaves-dispersion model is consequently proposed toward a more realistic two-layers fluid model. This improvement enables the evaluation of the perspectives opened by the new generation of compressible ocean models for ocean-acoustics applications. The acoustic regimes in this resulting model are shown to be in agreement with underwater acoustics literature. In addition, the free-surface boundary condition is in turn compared to the pressure release boundary condition to establish a bridge with classical acoustic dispersion models.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"189 ","pages":"Article 102371"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000581","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Auclair et al. (2021) analyzed the propagation of acoustic-gravity waves (AGWaves) in the ocean and showed that AGWaves dispersion can be described based on the inner and boundary dispersion relations. A major limitation to their two-dispersion-relation model is the assumption of a rigid bottom boundary since acoustic waves can cross the ocean bottom and propagate in the sediment. An extension of their AGWaves-dispersion model is consequently proposed toward a more realistic two-layers fluid model. This improvement enables the evaluation of the perspectives opened by the new generation of compressible ocean models for ocean-acoustics applications. The acoustic regimes in this resulting model are shown to be in agreement with underwater acoustics literature. In addition, the free-surface boundary condition is in turn compared to the pressure release boundary condition to establish a bridge with classical acoustic dispersion models.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.